Bachelor of Technology (Biotechnology)

Programme Code: BTB

Duration – 4 Years Full Time

Programme Structure

And
Curriculum & Scheme of Examination

2010

AMITY UNIVERSITY UTTAR PRADESH
GAUTAM BUDDHA NAGAR
PREAMBLE

Amity University aims to achieve academic excellence by providing multi-faceted education to students and encourage them to reach the pinnacle of success. The University has designed a system that would provide rigorous academic programme with necessary skills to enable them to excel in their careers.

This booklet contains the Programme Structure, the Detailed Curriculum and the Scheme of Examination. The Programme Structure includes the courses (Core and Elective), arranged semester wise. The importance of each course is defined in terms of credits attached to it. The credit units attached to each course has been further defined in terms of contact hours i.e. Lecture Hours (L), Tutorial Hours (T), Practical Hours (P). Towards earning credits in terms of contact hours, 1 Lecture and 1 Tutorial per week are rated as 1 credit each and 2 Practical hours per week are rated as 1 credit. Thus, for example, an L-T-P structure of 3-0-0 will have 3 credits, 3-1-0 will have 4 credits, and 3-1-2 will have 5 credits.

The Curriculum and Scheme of Examination of each course includes the course objectives, course contents, scheme of examination and the list of text and references. The scheme of examination defines the various components of evaluation and the weightage attached to each component. The different codes used for the components of evaluation and the weightage attached to them are:

<table>
<thead>
<tr>
<th>Components</th>
<th>Codes</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Discussion/ Presentation/ Analysis</td>
<td>C</td>
<td>05 - 10</td>
</tr>
<tr>
<td>Home Assignment</td>
<td>H</td>
<td>05 - 10</td>
</tr>
<tr>
<td>Project</td>
<td>P</td>
<td>05 - 10</td>
</tr>
<tr>
<td>Seminar</td>
<td>S</td>
<td>05 - 10</td>
</tr>
<tr>
<td>Viva</td>
<td>V</td>
<td>05 - 10</td>
</tr>
<tr>
<td>Quiz</td>
<td>Q</td>
<td>05 - 10</td>
</tr>
<tr>
<td>Class Test</td>
<td>CT</td>
<td>10 - 15</td>
</tr>
<tr>
<td>Attendance</td>
<td>A</td>
<td>05</td>
</tr>
<tr>
<td>End Semester Examination</td>
<td>EE</td>
<td>70</td>
</tr>
</tbody>
</table>

It is hoped that it will help the students study in a planned and a structured manner and promote effective learning. Wishing you an intellectually stimulating stay at Amity University.

July, 2010
PROGRAMME OBJECTIVE

B.Tech. degree program integrates bio-sciences and bio-engineering with multidisciplinary linkages embedded in the design of the curriculum. The main objective of the programme is to develop highly skilled professionals in varied areas of biotechnology. The students will be familiarized with advancements in genetic engineering, bioprocess engineering, immunotechnology, plant and animal biotechnology.

The highlight of the programme is to give wider coverage of biotechnology education, developing understanding of the intriguing issues related to life system, biotech product development and bioengineering.

The curriculum has an inbuilt system of industrial summer training which keeps students abreast of latest industrial applications. Last semester is mainly devoted to research oriented project which helps the student to develop independent scientific temper with ability to execute a time bound fact finding initiative.
BACHELOR OF TECHNOLOGY (BIOTECHNOLOGY)

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lectures (L) Hours Per Week</th>
<th>Tutorial (T) Hours Per Week</th>
<th>Practical (P) Hours Per Week</th>
<th>Total Credits</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 101</td>
<td>Applied Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 102</td>
<td>Applied Physics - I</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 103</td>
<td>Applied Chemistry - I</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 104</td>
<td>Introduction to Computers</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 105</td>
<td>Life Sciences</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 106</td>
<td>Environment Studies</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 120</td>
<td>Applied Physics Lab - I</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 121</td>
<td>Applied Chemistry Lab - I</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 122</td>
<td>Programming in C Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 123</td>
<td>Engineering Graphics Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 143</td>
<td>Behavioural Science – I</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 144</td>
<td>Foreign Language - I</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 145</td>
<td>French</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 146</td>
<td>German</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 147</td>
<td>Spanish</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 148</td>
<td>Japanese</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chinese</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The students will study English from I semester but final evaluation will be done at the end of IIInd semester. However continuous evaluation will start from the 1st Semester.

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lectures (L) Hours Per Week</th>
<th>Tutorial (T) Hours Per Week</th>
<th>Practical (P) Hours Per Week</th>
<th>Total Credits</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 201</td>
<td>Applied Mathematics - II</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 202</td>
<td>Applied Physics - II</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 203</td>
<td>Applied Chemistry - II</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 204</td>
<td>Object Oriented Programming in C++</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 205</td>
<td>Electrical Science</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 220</td>
<td>Applied Physics Lab - II</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 221</td>
<td>Applied Chemistry Lab - II</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 222</td>
<td>Object Oriented Programming in C++</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 223</td>
<td>Electrical Science Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 240</td>
<td>English</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BTB 243</td>
<td>Behavioural Science - II</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTB 244</td>
<td>Foreign Language – II</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 245</td>
<td>French</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 246</td>
<td>German</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 247</td>
<td>Spanish</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 248</td>
<td>Japanese</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERM PAPER DURING SUMMER BREAK
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 301</td>
<td>Cell Biology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 302</td>
<td>Biochemistry - I</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 303</td>
<td>Microbiology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>BTB 304</td>
<td>Basics of Computer Systems & Programming</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 305</td>
<td>Basic Bioanalytical Techniques</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 320</td>
<td>Cell Biology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 321</td>
<td>Biochemistry Lab - I</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 322</td>
<td>Microbiology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 323</td>
<td>Basics of Computer Systems & Programming Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 341</td>
<td>Communication Skills - I</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 343</td>
<td>Behavioural Science - III</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 344</td>
<td>Foreign Language - III</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 345</td>
<td>French</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 346</td>
<td>German</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 347</td>
<td>Spanish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 348</td>
<td>Chinese</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 330</td>
<td>Term Paper (Evaluation)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 401</td>
<td>Biochemistry - II</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 402</td>
<td>Genetics</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 403</td>
<td>Methods & Instrumentation in Biotechnology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 404</td>
<td>Data Structure & Algorithms</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 405</td>
<td>Chemical Biology</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 420</td>
<td>Biochemistry Lab - II</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 421</td>
<td>Genetics Lab</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 422</td>
<td>Methods & Instrumentation in Biotechnology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 423</td>
<td>Data Structure Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 441</td>
<td>Communication Skills - II</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 443</td>
<td>Behavioural Science - IV</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 444</td>
<td>Foreign Language - IV</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 445</td>
<td>French</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 446</td>
<td>German</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 447</td>
<td>Spanish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 448</td>
<td>Chinese</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMER PROJECT I – (6 - 8 WEEKS)

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 501</td>
<td>Molecular Biology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 502</td>
<td>Database Management Systems</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 503</td>
<td>Chemical Engineering Principles</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 504</td>
<td>Plant Biotechnology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 505</td>
<td>Animal Biotechnology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 520</td>
<td>Molecular Biology Lab</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 521</td>
<td>Plant Biotechnology Lab</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 522</td>
<td>Animal Biotechnology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 523</td>
<td>Database Management Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 541</td>
<td>Communication Skills - III</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 543</td>
<td>Behavioural Science - V</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>ECTS</td>
<td>PL</td>
<td>Total</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>BTB 544</td>
<td>Foreign Language - V</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 545</td>
<td>French</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 546</td>
<td>German</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 547</td>
<td>Spanish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 548</td>
<td>Chinese</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 560</td>
<td>Summer Project – I (Evaluation)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>PL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 601</td>
<td>Recombinant DNA Technology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 602</td>
<td>Enzymology & Enzyme Technology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 603</td>
<td>Structural Biology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 604</td>
<td>Immunology & Immunotechnology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 605</td>
<td>Computational Biology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 606</td>
<td>Fundamentals of Biochemical Engineering</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 620</td>
<td>Recombinant DNA Technology Lab</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 621</td>
<td>Enzymology & Enzyme Technology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 622</td>
<td>Structural Biology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 623</td>
<td>Immunology & Immunotechnology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 624</td>
<td>Computational Biology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BTB 641</td>
<td>Communication Skills - IV</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 643</td>
<td>Behavioural Science - VI</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 644</td>
<td>Foreign Language - VI</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 645</td>
<td>French</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 646</td>
<td>German</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 647</td>
<td>Spanish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 648</td>
<td>Chinese</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
</tbody>
</table>

SUMMER PROJECT - II – (6 - 8 WEEKS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>PL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 701</td>
<td>Bioprocess Technology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 702</td>
<td>Downstream Processing</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 703</td>
<td>Statistics for Biology</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 704</td>
<td>Elective (Anyone of the following 8)</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>• Thermodynamics of Biological Systems</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Pharmaceutical Chemistry & Drug Design</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Current Topics in Biotechnology</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Environmental Biotechnology</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Bioprocess Plant Design</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Drug Delivery Systems</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Artificial Neural Networks</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Biosensors</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 712</td>
<td>Genomic & Proteomics</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 720</td>
<td>Bioprocess Technology Lab</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 721</td>
<td>Downstream Processing Lab</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 722</td>
<td>Genomic & Proteomics Lab</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>BTB 741</td>
<td>Communication Skills - V</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 743</td>
<td>Behavioural Science - VII</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 744</td>
<td>Foreign Language - VII</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 745</td>
<td>French</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 746</td>
<td>German</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BTB 747</td>
<td>Spanish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Students of batch 2007-2011 and 2008-2012 shall be studying the course Principles of Management and Entrepreneurship Development in semester VII as they have already studied Statistics for Biology in semester IV.

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>-</th>
<th>-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB 801</td>
<td>Project Management</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 802</td>
<td>Management, Accounting & Cost Control</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BTB 803</td>
<td>Principles of management & Entrepreneurship Development</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BTB 841</td>
<td>Communication Skills -VI</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 843</td>
<td>Behavioural Science - VIII</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BTB 844</td>
<td>Foreign Language -VIII</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BTB 845</td>
<td>French</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 846</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 847</td>
<td>Spanish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 848</td>
<td>Japanese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 849</td>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB 860</td>
<td>Major Project (12 – 14 Weeks)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>
Curriculum & Scheme of Examination

APPLIED MATHEMATICS – I

Course Code: BTB 101 Credit Units: 04

Course Objective:
The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Differential Calculus
Derivative of a function, Derivatives at a point, Fundamental rules for differentiation: Product Rule, Quotient Rule and Chain Rule, Differentiation of Implicit Functions, Parametric forms and Logarithmic Differentiation, Successive differentiation, Leibnitz’s theorem (without proof), Mean value theorem, Taylor’s and Maclaurin’s Theorem, Asymptote & Curvature, Partial Differentiation, Euler’s Theorem, Maxima and Minima

Module II: Integral Calculus
Fundamental Integral Formulae, Methods of Integration: Integration by Substitution, By Parts, Partial Fractions, Definite Integral and its Properties, Reduction Formulae, Application to length, Area and Volume.

Module III: Ordinary Differential Equations
Definition of Order and Degree of differential equation, Formation of ODEs, Solution of Differential Equation of 1st Order and 1st Degree: Variable Separation, Homogeneous Differential Equations, Linear Differential Equations, Exact Differential Equations, General Linear ODE of Second Order, Solution of Homogeneous Equation, Solution of Simple Simultaneous ODE

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Differential Calculus by Shanti Narain
- Integral Calculus by Shanti Narain

References:
- Differential Equation by A.R.Forsyth
- Higher Engineering Mathematics by H.K. Dass
APPLIED PHYSICS - I (FIELDS AND WAVES)

Course Code: BTB 102
Credit Units: 03

Course Objective:
Aim of this course is to introduce the students to fundamentals of graduate level physics, which form the basis of all applied science and engineering

Course Contents:

Module I: Electrostatics
Brief introduction of Vectors, gradient of a scalar field, divergence and curl of vector field, Electric flux, Gauss’s law, Statements of Gauss divergence and Stokes theorem

Module II: Relativity
Michelson-Morley experiment, Inertial & non-inertial frames, Special theory of Relativity, Relativistic space-time transformation, Transformation of velocity, Variation of mass with velocity, Mass-energy equivalence

Module III: Oscillations & Waves
Simple harmonic motion – equation and energy conservation, superposition of two SHMs, Lissajous figures, damped and forced oscillations – equations, amplitude and frequency response, LCR Circuit, resonance, sharpness of resonance, equation of motion for plane progressive waves, superposition of waves

Module IV: Wave Nature of Light
Interference: Conditions of interference, division of wavefront, Fresnel’s biprism, division of amplitude, interference due to thin films, Newton’s rings
Diffraction: Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at a single slit, Transmission grating and its resolving power.
Polarization: Birefringence, Nicol prism, Production and analysis of plane, circularly and elliptically polarized light, Half and quarter wave plates, Optical rotation

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Waves & oscillation, A. P. French
- Physics of waves, W. C. Elmore & M. A. Heald
- Introduction to Electrodynamics, D. J. Griffith
- Electrodynamics, Gupta, Kumar & Singh
- Optics, A. K. Ghatak
- Engineering Physics, Satya Prakash
APPLIED CHEMISTRY- I

Course Code: BTB 103 Credit Units: 03

Course Objective:
Four basic sciences, Physics, Chemistry, Mathematics and Biology are the building blocks in engineering and technology. Chemistry is essential to develop analytical capabilities of students, so that they can characterize, transform and use materials in engineering and apply knowledge in their field. All engineering fields have unique bonds with chemistry whether it is Aerospace, Mechanical, Environmental and other fields the makeup of substances is always a key factor, which must be known. For electronics and computer science engineering, apart from the material, computer modeling and simulation knowledge can be inherited from the molecule designing. The upcoming field of technology like Nanotechnology and Biotechnology depends fully on the knowledge of basic chemistry. With this versatile need in view, course has been designed in such a way so that the student should get an overview of the whole subject starting from the very basic bonding mechanism to the application of materials.

Course Contents:

Module I: Chemical Bonding
Types of bond: Ionic, Covalent and Co-ordinate bond; Fajan’s rule; Hybridisation; H- bonding ; Valence bond and Molecular orbital theory for diatomic molecule.

Module II: Organic Mechanism
Electronegativity and dipole moment; Electron Displacement Effects: Inductive Effect; Mesomeric Effect; Electromeric Effects; Fission of covalent bonds; Intermediates of Organic reactions; Carbonium, Carbanion, Free Radical and Carbene; Types of organic reactions; Substitution, Elimination, Addition.

Module III: Instrumental method for Analysis
Introduction; Principles of spectroscopy; Law’s of Absorbance; IR: Principle Instrumentation; Application; UV: Principle, Instrumentation and Application; NMR Principle and Instrumentation; Application; Chromatography; GC: Principle, Instrumentation and Application; HPLC: Principle, Instrumentation and Application.

Module IV: Thermodynamics
Introduction; Terminology; First Law; Heat Capacity; Calculation of thermodynamic quantities; Adiabatic and Isothermal Process; Reversible and Irreversible Process; Second law of Thermodynamics; Standard State; Gilb’s Helmholtz equation; VantHoff Isotherm and Isochore; Maxwell Relation; Third law of Thermodynamics; Chemical Potential; Activity and Activity Coefficient; Coupled Reactions.

Module V: Chemical Equilibrium
Introduction ; Le Chatelier’s Principle; Equilibrium constant from Thermodynamic Constants; Acid-Base Concept; Weak acid and Weak base and their salts; Solubility Product; pH and pOH, Buffer Solution, Buffer Action.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Engineering Chmistry, Jain & Jain
- Engineering Chmistry, Shashi Chawla

References:
- Organic Mechanism, Morrison and Boyd
- Physical Chemistry, Puri Sharma and Pathania
- Organic Chemistry Vol-I, IL Finar
- Organic Chemistry Vol-II, IL Finar
- Physical Chemistry, Atkins Peter, Paula Julio
- A guide to mechanism in organic chemistry, Peter Sykes.
- Introduction to practical chemistry, K.K.Sharma
- Concise Inorganic chemistry, J.D. Lee
INTRODUCTION TO COMPUTERS

Course Code: BTB 104 Credit Units: 02

Course Objective:
The objective of this course module is to acquaint the students with the basics of computers system, its components, data representation inside computer and to get them familiar with various important features of procedure oriented programming language i.e. C.

Course Contents:

Module I: Introduction
Introduction to computer, history, von-Neumann architecture, memory system (hierarchy, characteristics and types), H/W concepts (I/O Devices), S/W concepts (System S/W & Application S/W, utilities). Data Representation: Number systems, character representation codes, Binary, octal, hexadecimal and their interconversions. Binary arithmetic, floating point arithmetic, signed and unsigned numbers, Memory storage unit.

Module II: Programming in C

Module III: Fundamental Features in C
C Statements, conditional executing using if, else, nesting of if, switch and break Concepts of loops, example of loops in C using for, while and do-while, continue and break. Storage types(automatic, register etc.), predefined processor, Command Line Argument.

Module IV: Arrays and Functions
One dimensional arrays and example of iterative programs using arrays, 2-D arrays Use in matrix computations. Concept of Sub-programming, functions Example of user defined functions. Function prototype, Return values and their types, calling function, function argument, function with variable number of argument, recursion.

Module V: Advanced features in C

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- “ANSI C” by E Balagurusamy.

References:
LIFE SCIENCES

Course Code: BTB 105 Credit Units: 02

Course Objective:
The objective of the course is to provide students an understanding of the very basic molecules of life-DNA, RNA, proteins and how these molecules, when form further complex molecules like carbohydrates, vitamins and lipids, then functioning of body takes place. Since technology is advancing in every field, emphasis is also given on the understanding of application of some biotechnological concepts used in our daily life like biofuels, biofertilizers. An introduction to the origin of earth, the environment-air, water and land, origin of life on Earth, how life evolved from a single cell, some environmental problems and measures to be taken to combat them.

Course Contents:

Module I: Cell Biology
Organization of cell (Inorganic-Water and Ions; Organic-Proteins, Lipids and Carbohydrates constituents)
Physical structure of the cell-Brief introduction to the Cell Membrane, Cytoplasm and its Organelles (Nucleus, Mitochondria, Golgi, Endoplasmic Reticulum, Lysosomes, Peroxisomes, Ribosomes, Chloroplasts)
Cell cycle.

Module II: Introduction to Cell Physiology
Transport of substances through the cell membrane- Osmosis, Diffusion and its types, Active transport (Sodium-potassium pump) and Passive transport
Membrane potential, Measuring Membrane Potential, Action Potential
Electrocardiogram (ECG)
Electromyography (EMG)
Electroencephalography (EEG)

Module III: Environmental Biotechnology
Biosensors, Biochips and Biofilms
GMO’s and Biofertilizers
Biofuels
Gene Therapy, Stem cell and Nanobiomolecules
Bio Informatics- Introduction and Applications

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Introduction to Environmental Pollution, B.K Sharma, H.Kaur, Goel Publishers.
- Biochemistry Styrier.
- Cell Biology, C B Pawar.
- Biochemistry, Lalinger.
ENVIRONMENT STUDIES

Course Code: BTB 106 Credit Units: 04

Course Objective:
The term environment is used to describe, in the aggregate, all the external forces, influences and conditions, which affect the life, nature, behaviour and the growth, development and maturity of living organisms. At present a great number of environment issues, have grown in size and complexity day by day, threatening the survival of mankind on earth. A study of environmental studies is quite essential in all types of environmental sciences, environmental engineering and industrial management. The objective of environmental studies is to enlighten the masses about the importance of the protection and conservation of our environment and control of human activities which has an adverse effect on the environment.

Course Contents:

Module I: The multidisciplinary nature of environmental studies
Definition, scope and importance
Need for public awareness

Module II: Natural Resources
Renewable and non-renewable resources:
Natural resources and associated problems
Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.
Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
 − Role of an individual in conservation of natural resources.
 − Equitable use of resources for sustainable lifestyles.

Module III: Ecosystems
Concept of an ecosystem
Structure and function of an ecosystem
Producers, consumers and decomposers
Energy flow in the ecosystem
Ecological succession
Food chains, food webs and ecological pyramids
Introduction, types, characteristic features, structure and function of the following ecosystem:
 a. Forest ecosystem
 b. Grassland ecosystem
 c. Desert ecosystem
 d. Aquatic ecosystems (ponds, streams, lakes, rivers, ocean estuaries)

Module IV: Biodiversity and its conservation
Introduction – Definition: genetic, species and ecosystem diversity
Biogeographical classification of India
Value of biodiversity: consumptive use, productive use, social, ethical aesthetic and option values
Biodiversity at global, national and local levels
India as a mega-diversity nation
Hot-spots of biodiversity
Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts
Endangered and endemic species of India
Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity
Module V: Environmental Pollution

Definition

Causes, effects and control measures of:

a. Air pollution
b. Water pollution
c. Soil pollution
d. Marine pollution
e. Noise pollution
f. Thermal pollution
g. Nuclear pollution

Solid waste management: Causes, effects and control measures of urban and industrial wastes.
Role of an individual in prevention of pollution.
Pollution case studies.
Disaster management: floods, earthquake, cyclone and landslides.

Module VI: Social Issues and the Environment

From unsustainable to sustainable development
Urban problems and related to energy
Water conservation, rain water harvesting, watershed management
Resettlement and rehabilitation of people; its problems and concerns. Case studies.
Environmental ethics: Issues and possible solutions
Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
Wasteland reclamation
Consumerism and waste products
Environmental Protection Act
Air (Prevention and Control of Pollution) Act
Water (Prevention and control of Pollution) Act
Wildlife Protection Act
Forest Conservation Act
Issues involved in enforcement of environmental legislation
Public awareness

Module VII: Human Population and the Environment

Population growth, variation among nations
Population explosion – Family Welfare Programmes
Environment and human health
Human Rights
Value Education
HIV / AIDS
Women and Child Welfare
Role of Information Technology in Environment and Human Health
Case Studies

Module VIII: Field Work

Visit to a local area to document environmental assets-river / forest / grassland / hill / mountain.
Visit to a local polluted site – Urban / Rural / Industrial / Agricultural
Study of common plants, insects, birds
Study of simple ecosystems-pond, river, hill slopes, etc (Field work equal to 5 lecture hours)

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>HA</th>
<th>S/V/Q</th>
<th>A</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, Email:mapin@icenet.net (R)
- Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)
- De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- Down to Earth, Centre for Science and Environment (R)
- Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)
- Survey of the Environment, The Hindu (M)
- Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno-Science Publication (TB)
List of Experiments

1. To determine the wavelength of sodium light by Newton's rings method.
2. To determine the dispersive power of the material of prism with the help of a spectrometer.
3. To determine the specific rotation of sugar by Bi-quartz or Laurent half shade polarimeter.
4. To determine the speed of ultrasonic waves in liquid by diffraction method.
5. To determine the width of a narrow slit using diffraction phenomena.
6. To determine the temperature coefficient of platinum wire, using a platinum resistance thermometer and a Callender & Grif/fh’s bridge.
7. To determine the value of specific charge (ratio of e/m) of an electron by Thomson method.
8. To determine the internal resistance of Leclanche cell with the help of Potentiometer.
9. To determine the resistance per unit length of a Carey Foster’s bridge wire and also to find out the specific resistance of a given wire.
10. To plot graph showing the variation of magnetic field with distance along the axis of a circular coil carrying current, and hence estimate the radius of the coil.
11. To determine the value of acceleration due to gravity (“g”) in the laboratory using bar pendulum.
12. To determine the moment of inertia of a flywheel about its own axis of rotation.
13. To determine the density of material of the given wire with the help of sonometer

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
List of Experiments

1. Titration of phosphoric acid and sodium hydroxide solution using pH meter.
2. Verification and application of Beer’s Law.
3. Spectroscopic analysis of iron in water sample.
5. Determination of water modules of crystallization in Mohr’s salt.
6. (A) Determination of surface Tension of liquid.
 (B) Application of surface tension method in mixture analysis.
7. Application of distribution law in the determination of equilibrium constant.
8. Analysis of iron ore.

Examination Scheme:

<table>
<thead>
<tr>
<th></th>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>(Practical</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Based)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid Term</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Viva</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Major</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment/Spotting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viva</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAMMING IN C LAB

Course Code: BTB 122 Credit Units: 01

Software Required: Turbo C

Course Contents:

Module I
DOS commands

Module II
Creation of batch files

Module III
C program involving problems like finding the nth value of cosine series, Fibonacci series etc.

Module IV
C programs including user defined function calls

Module V
C programs involving pointers, and solving various problems with the help of those.

Module VI
File handling

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Course Objective:
This course will provide students concepts on the drawings of different curves like straight line, parabola, ellipse etc. After completion of this course, students will be able to draw different figures manually and will be capable of using various instruments involved in drawings.

Course Contents:

Module I: General
Importance, Significance and scope of engineering drawing, Lettering, Dimensioning, Scales, Sense of proportioning, Different types of projections, Orthographic Projection, B.I.S. Specifications.

Module II: Projections of Point and Lines
Introduction of planes of projection, Reference and auxiliary planes, projections of points and Lines in different quadrants, traces, inclinations, and true lengths of the lines, projections on Auxiliary planes, shortest distance, intersecting and non-intersecting lines.

Module III: Planes other than the Reference Planes
Introduction of other planes (perpendicular and oblique), their traces, inclinations etc., Projections of points and lines lying in the planes, conversion of oblique plane into auxiliary Plane and solution of related problems.

Module IV: Projections of Plane Figures
Different cases of plane figures (of different shapes) making different angles with one or both reference planes and lines lying in the plane figures making different given angles (with one of both reference planes). Obtaining true shape of the plane figure by projection.

Module V: Projection of Solids
Simple cases when solid is placed in different positions, Axis faces and lines lying in the faces of the solid making given angles.

Module VI: Development of Surface
Development of simple objects with and without sectioning. Isometric Projection

Examination Scheme:

<table>
<thead>
<tr>
<th></th>
<th>IA</th>
<th></th>
<th></th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>Mid Term Viva</td>
<td>Attendance</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>Class Test (Practical Based)</td>
<td>15</td>
<td>10</td>
<td>05</td>
<td>35</td>
</tr>
</tbody>
</table>

Text & References:

- PS Gill, Engineering Drawing, Kataria Publication
- ND Bhatt, Engineering Drawing, Charotar publications
- N Sidheshwar, Engineering Drawing, Tata McGraw Hill
- CL tanta, Mechanical Drawing, “Dhanpat Rai”
Course Objective:
The course is intended to give a foundation of English Language. The literary texts are indented to help students to inculcate creative & aesthetic sensitivity and critical faculty through comprehension, appreciation and analysis of the prescribed literary texts. It will also help them to respond form different perspectives.

Course Contents:

Module I: Vocabulary
Use of Dictionary
Use of Words: Diminutives, Homonyms & Homophones

Module II: Essentials of Grammar - I
Articles
Parts of Speech
Tenses

Module III: Essentials of Grammar - II
Sentence Structure
Subject -Verb agreement
Punctuation

Module IV: Communication
The process and importance
Principles & benefits of Effective Communication

Module V: Spoken English Communication
Speech Drills
Pronunciation and accent
Stress and Intonation

Module VI: Communication Skills-I
Developing listening skills
Developing speaking skills

Module VII: Communication Skills-II
Developing Reading Skills
Developing writing Skills

Module VIII: Written English communication
Progression of Thought/ideas
Structure of Paragraph
Structure of Essays

Module IX: Short Stories
Of Studies, by Francis Bacon
Dream Children, by Charles Lamb
The Necklace, by Guy de Maupassant
A Shadow, by R.K.Narayan
Glory at Twilight, Bhabani Bhattacharya

Module X: Poems
All the Worlds a Stage Shakespeare
To Autumn Keats
O! Captain, My Captain. Walt Whitman
Where the Mind is Without Fear Rabindranath Tagore
Psalm of Life H.W. Longfellow

Examination Scheme:
<table>
<thead>
<tr>
<th>Components</th>
<th>A</th>
<th>CT</th>
<th>HA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>05</td>
<td>15</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>
Text & References:

- Madhulika Jha, Echoes, Orient Long Man
- Successful Communications, Malra Treece (Allyn and Bacon)
- Effective Technical Communication, M. Ashraf Rizvi.

* 30 hrs Programme to be continued for Full year
BEHAVIOURAL SCIENCE - I
(UNDERSTANDING SELF FOR EFFECTIVENESS)

Course Code: BTB 143 Credit Units: 01

Course Objective:
This course aims at imparting:
Understanding self & process of self exploration
Learning strategies for development of a healthy self esteem
Importance of attitudes and its effective on personality
Building Emotional Competence

Course Contents:

Module I: Self: Core Competency
Understanding of Self
Components of Self – Self identity
Self concept
Self confidence
Self image

Module II: Techniques of Self Awareness
Exploration through Johari Window
Mapping the key characteristics of self
Framing a charter for self
Stages – self awareness, self acceptance and self realization

Module III: Self Esteem & Effectiveness
Meaning and Importance
Components of self esteem
High and low self esteem
Measuring your self esteem

Module IV: Building Positive Attitude
Meaning and nature of attitude
Components and Types of attitude
Importance and relevance of attitude

Module V: Building Emotional Competence
Emotional Intelligence – Meaning, components, Importance and Relevance
Positive and Negative emotions
Healthy and Unhealthy expression of emotions

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Text & References:

- Organizational Behaviour, Davis, K.
- Bates, A. P. and Julian, J.: Sociology - Understanding Social Behaviour
- Dressler, David and Cans, Donald: The Study of Human Interaction
- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
Course Code: BTB 144
Credit Units: 02

Course Objective:
To familiarize the students with the French language
- with the phonetic system
- with the syntax
- with the manners
- with the cultural aspects

Course Contents:

Module A: pp. 01 to 37: Unités 1, 2, Unité 3 Objectif 1,2
Only grammar of Unité 3: objectif 3, 4 and 5

Contenu lexical: Unité 1: Découvrir la langue française : (oral et écrit)
1. se présenter, présenter quelqu’un, faire la connaissance des autres, formules de politesse, rencontres
2. dire/interroger si on comprend
3. Nommer les choses

Unité 2: Faire connaissance
1. donner/demander des informations sur une personne, premiers contacts, exprimer ses goûts et ses préférences
2. Parler de soi: parler du travail, de ses activités, de son pays, de sa ville.

Unité 3: Organiser son temps
1. dire la date et l’heure

Contenu grammatical:
1. organisation générale de la grammaire
2. article indéfini, défini, contracté
3. nom, adjectif, masculin, féminin, singulier et pluriel
4. négation avec « de », "moi aussi", "moi non plus"
5. interrogation : Inversion, est-ce que, qui, que, quoi, qu’est-ce que, où, quand, comment, quel(s), quelle(s)
Interro-négatif : réponses : oui, si, non
6. pronom tonique/disjoint- pour insister après une préposition
7. futur proche

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- le livre à suivre : Campus: Tome 1
Course Code: BTB 145 Credit Units: 02

Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Introduction
Self introduction: heissen, kommen, wohnen, lernen, arbeiten, trinken, etc.
All personal pronouns in relation to the verbs taught so far.
Greetings: Guten Morgen!, Guten Tag!, Guten Abend!, Gute Nacht!, Danke sehr!, Danke!, Vielen Dank!, (es tut mir Leid!),
Hallo, wie geht’s?: Danke gut!, sehr gut!, prima!, ausgezeichnet!,
Es geht!, nicht so gut!, so la la!, miserabel!

Module II: Interviewspiel
To assimilate the vocabulary learnt so far and to apply the words and phrases in short dialogues in an interview – game for self introduction.

Module III: Phonetics
Sound system of the language with special stress on Diphthongs

Module IV: Countries, nationalities and their languages
To make the students acquainted with the most widely used country names, their nationalities and the language spoken in that country.

Module V: Articles
The definite and indefinite articles in masculine, feminine and neuter gender. All Vegetables, Fruits, Animals, Furniture, Eatables, modes of Transport

Module VI: Professions
To acquaint the students with professions in both the genders with the help of the verb “sein”.

Module VII: Pronouns
Simple possessive pronouns, the use of my, your, etc.
The family members, family Tree with the help of the verb “to have”

Module VIII: Colours
All the color and color related vocabulary – colored, colorful, colorless, pale, light, dark, etc.

Module IX: Numbers and calculations – verb “kosten”
The counting, plural structures and simple calculation like addition, subtraction, multiplication and division to test the knowledge of numbers.
Wie viel kostet das?

Module X: Revision list of Question pronouns
W – Questions like who, what, where, when, which, how, how many, how much, etc.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice
Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
SPANISH – I

Course Code: BTB 146 Credit Units: 02

Course Objective:
To enable students acquire the relevance of the Spanish language in today’s global context, how to greet each other. How to present / introduce each other using basic verbs and vocabulary

Course Contents:

Module I
A brief history of Spain, Latin America, the language, the culture…and the relevance of Spanish language in today’s global context.
Introduction to alphabets

Module II
Introduction to ‘Saludos’ (How to greet each other. How to present / introduce each other).
Goodbyes (despedidas)
The verb llamarse and practice of it.

Module III
Concept of Gender and Number
Months of the years, days of the week, seasons. Introduction to numbers 1-100, Colors, Revision of numbers and introduction to ordinal numbers.

Module IV
Introduction to SER and ESTAR (both of which mean To Be). Revision of ‘Saludos’ and ‘Llamarse’. Some adjectives, nationalities, professions, physical/geographical location, the fact that Spanish adjectives have to agree with gender and number of their nouns. Exercises highlighting usage of Ser and Estar.

Module V
Time, demonstrative pronoun (Este/esta, Aquel/aquella etc)

Module VI
Introduction to some key AR/ER/IR ending regular verbs.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español, En Directo I A
- Español Sin Fronteras
JAPANESE - I

Course Code: BTB 147 Credit Units: 02

Course Objective:
To enable the students to learn the basic rules of grammar and Japanese language to be used in daily life that will later help them to strengthen their language.

Course Contents:

Module I: Salutations
Self introduction, Asking and answering to small general questions

Module II: Cardinal Numbers
Numerals, Expression of time and period, Days, months

Module III: Tenses
Present Tense, Future tense

Module IV: Prepositions
Particles, possession, Forming questions

Module V: Demonstratives
Interrogatives, pronoun and adjectives

Module VI: Description
Common phrases, Adjectives to describe a person

Module VII: Schedule
Time Table, everyday routine etc.

Module VIII: Outings
Going to see a movie, party, friend’s house etc.

Learning Outcome
➢ Students can speak the basic language describing above mentioned topics

Methods of Private study /Self help
➢ Handouts, audio-aids, and self-do assignments and role-plays will support classroom teaching

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

Text:
• Teach yourself Japanese

References:
• Shin Nihongo no kiso 1
Course Objective:
There are many dialects spoken in China, but the language which will help you through wherever you go is Mandarin, or Putonghua, as it is called in Chinese. The most widely spoken forms of Chinese are Mandarin, Cantonese, Gan, Hakka, Min, Wu and Xiang. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Show pictures, dialogue and retell.
Getting to know each other.
Practicing chart with Initials and Finals. (CHART – The Chinese Phonetic Alphabet Called “Hanyu Pinyin” in Mandarin Chinese.)
Practicing of Tones as it is a tonal language.
Changes in 3rd tone and Neutral Tone.

Module II
Greetings
Let me Introduce
The modal particle “ne”.
Use of Please ‘qing” – sit, have tea …………… etc.
A brief self introduction – Ni hao ma? Zaijian!
Use of “bu” negative.

Module III
Attributives showing possession
How is your Health? Thank you
Where are you from?
A few Professions like – Engineer, Businessman, Doctor, Teacher, Worker.
Are you busy with your work?
May I know your name?

Module IV
Use of “How many” – People in your family?
Use of “zhe” and “na”.
Use of interrogative particle “shenme”, “shui”, “ma” and “nar”.
How to make interrogative sentences ending with “ma”.
Structural particle “de”.
Use of “Nin” when and where to use and with whom. Use of guixing.
Use of verb “zuo” and how to make sentences with it.

Module V
Family structure and Relations.
Use of “you” – “mei you”.
Measure words
Days and Weekdays.
Numbers.
Maps, different languages and Countries.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice
Text & References:

- “Elementary Chinese Reader Part I” Lesson 1-10

APPLIED MATHEMATICS – II

Course Code: BTB 201
Credit Units: 04

Course Objective:
The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Linear Algebra

Module II: Complex Number
Definition of Complex Number, Equality, Conjugate and Modulus of a Complex Number, Polar form of a Complex Number, De-Moivre’s Theorem, Roots of a Complex Number, Exponential and Circular function of a Complex Number, Hyperbolic Functions and their inverses.

Module III: Vector Calculus
Scalar and vector field, Gradient, Divergence and Curl, Directional Derivative, Evaluation of a Line Integral, Green’s theorem in plain (without proof), Stoke’s theorem (without proof) and Gauss Divergence theorem (without proof)

Module IV: Probability and Statistics

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Higher Engineering Mathematics by H.K. Dass
APPLIED PHYSICS - II

Course Code: BTB 202 Credit Units: 03

Course Objective:
Aim of this course is to introduce the students to fundamentals of graduate level physics, which form the basis of all applied science and engineering.

Course Contents:

Module I: Wave Mechanics
de-Broglie matter waves, wave nature of particles, phase and group velocity, Heisenberg uncertainty principle, wave function and its physics interpretation, Operators, expectation values. Time dependent & time independent Schrödinger wave equation for free & bound states, square well potential (rigid wall), Concept of step potential.

Module II: Atomic Physics
Vector atom model, LS and j-j coupling, Zeeman effect & Paschen-Back effect, Bragg’s law, X-ray spectra and energy level diagram, Laser – Einstein coefficient, population inversion, condition of light amplification, He-Ne and Ruby laser

Module III: Solid State Physics
Sommerfield’s free electron theory of metals, Fermi energy, Energy bands in solids, physics of semi-conductors, doping, intrinsic and extrinsic semiconductors, Depletion layer, characteristics of PN junction, Forward and reverse biasing, Breakdown voltage, Superconductivity, Meissner effect, Introduction to Nanomaterials

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Concept of Modern Physics, A. Beiser
- Applied Physics II, Agarawal & Goel
- Solid State Physics, S. O. Pallai
- Physics of Atom, Wehr & Richards
Course Objective:
Four basic sciences, Physics, Chemistry, Mathematics and Biology are the building blocks in engineering and technology. Chemistry is essential to develop analytical capabilities of students, so that they can characterize, transform and use materials in engineering and apply knowledge in their field. All engineering fields have unique bonds with chemistry whether it is Aerospace, Mechanical, Environmental and other fields the makeup of substances is always a key factor, which must be known. For electronics and computer science engineering, apart from the material, computer modeling and simulation knowledge can be inherited from the molecule designing. The upcoming field of technology like Nanotechnology and Biotechnology depends fully on the knowledge of basic chemistry. With this versatile need in view, course has been designed in such a way so that the student should get an overview of the whole subject starting from the very basic bonding mechanism to the application of materials.

Course Contents:

Module I: Water
Hardness of Water; Boiler Feed Water; Scale and Sludge; Softening of Water; External and Internal Treatment of Boiler Water; Domestic Water Treatment; Domestic Water Treatment; Desalination of Brackish Water; Chemical Analysis of Water; Dissolved O₂ (BOD, COD); Estimation of Free Chlorine; TDS.

Module II: Lubricants
Introduction; Mechanism of Lubrication; Types of Lubricants; Chemical structure related to Lubrication; Properties of lubricants; Viscosity and Viscosity Index; Iodine Value; Aniline Point; Emulsion number; Flash Point; Fire Point; Drop Point; Cloud Point; Pour Point. Selection of Lubricants.

Module III: Fuel
Introduction; Characteristics of good Fuel ; Calorific value; Bomb Calorimeter; Proximate and Ultimate analysis of coal; Carbonization of coal; Gasification and Liquification of coal: Fischer Tropsch and Bergius Process; Water Gas and Producer Gas

Module IV: Polymers
Introduction; Polymerization: Addition and Condensation Polymerization; Thermosetting and Thermoplastic Polymers; Molecular Weight of Polymer; Rubber, Plastic and Fiber; Preparation, Properties and uses of PMMA, Polyester, Epoxy Resins and Bakelite, Silicone Polymers.

Module V: Corrosion

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Engineering Chemistry-Jain & Jain
- Engineering Chemistry- Shashi Chawla

References:
- Engineering Chemistry -Dara
- Engineering Chemistry -Sunita Ratan
- Polymer Science - Gowariker, Viswanathan Sreedhar
- Corrosion Engineering – Fontenna and Greene
OBJECT ORIENTED PROGRAMMING IN C++

Course Code: BTB 204 Credit Units: 03

Course Objective:
The objective of this module is to introduce object oriented programming. To explore and implement the various features of OOP such as inheritance, polymorphism, Exceptional handling using programming language C++. After completing this course student can easily identify the basic difference between the programming approaches like procedural and object oriented.

Course Contents:

Module I: Introduction

Module II: Classes and Objects
Abstract data types, Object & classes, attributes, methods, C++ class declaration, Local Class and Global Class, State identity and behaviour of an object, Local Object and Global Object, Scope resolution operator, Friend Functions, Inline functions, Constructors and destructors, instantiation of objects, Types of Constructors, Static Class Data, Array of Objects, Constant member functions and Objects, Memory management Operators.

Module III: Inheritance
Inheritance, Types of Inheritance, access modes – public, private & protected, Abstract Classes, Ambiguity resolution using scope resolution operator and Virtual base class, Aggregation, composition vs classification hiérarchies, Overriding inheritance methods, Constructors in derived classes, Nesting of Classes.

Module IV: Polymorphism
Polymorphism, Type of Polymorphism – Compile time and runtime, Function Overloading, Operator Overloading (Unary and Binary) Polymorphism by parameter, Pointer to objects, this pointer, Virtual Functions, pure virtual functions.

Module V: Strings, Files and Exception Handling

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- “Object Oriented Programming with C++” By E. Balagurusamy.

References:
ELECTRICAL SCIENCE

Course Code: BTB 205 Credit Units: 02

Course Objective:
The objective of the course is to provide a brief knowledge of Electrical Engineering to students of all disciplines. This Course includes some theorems related to electrical, some law’s related to flow of current, voltages, basic knowledge of Transformer, basic knowledge of electromagnetism, basic knowledge of electrical network.

Course Contents:

Module I: Basic Electrical Quantities

Module II: Network Analysis Techniques & Theorems

Module III: Alternating Current Circuits
Peak, Average and RMS values for alternating currents, Power calculation: reactive power, active power, Complex power, power factor, impedance, reactance, conductance, susceptance Resonance: series Resonance, parallel resonance, basic definition of Q factor & Band-width.

Module IV: Transformers
Basic Transformer Operation principle, Construction, Voltage relations, current relations, Linear circuit models, open circuit test, short circuit test, Transformer Efficiency.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- R.J. Smith, R.C. Dorf: Circuits, devices and Systems
- B.L. Thareja: Electrical Technology : Part -1 & 2
- V.Deltoro: Electrical Engineering fundamentals
- Schaum’s Series: Electrical Circuits
APPLIED PHYSICS LAB - II

Course Code: BTB 220 Credit Units: 01

List of Experiments

1. To determine the wavelength of prominent lines of mercury spectrum using plane transmission grating.
2. To determine the thickness of a given wire by Wedge method.
3. To determine the wavelength of He-Ne laser light using single slit.
4. To determine the frequency of an electrically maintained tuning fork by Melde’s method.
5. To study the variation of magnetic field along the axis of Helmholtz coil and to find out reduction factor.
6. To draw the V – I characteristics of a forward and reverse bias PN junction diode.
7. To determine the frequency of AC mains using sonometer.
8. To determine the energy band-gap of Germanium crystal using four probes method.
9. To draw V – I characteristics of a photocell and to verify the inverse square law of radiation.
10. To determine the acceleration due to gravity (“g”) using Keter’s reversible pendulum.
11. To study the characteristics of photo voltaic cell (Solar cell).

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Class Test (Practical Based)</td>
</tr>
<tr>
<td>EE</td>
<td>15</td>
</tr>
</tbody>
</table>
APPLIED CHEMISTRY LAB - II

Course Code: BTB 221 Credit Units: 01

Course Contents:

1. Determining the viscosity index of lubricating oil by using Redwood viscometer.
2. Determining the flash point and fire point of lubricating oil.
5. Synthesis of Urea Formaldehyde resin.
6. Determination of Molecular weight of Polymer.
7. Determination of Ion exchange capacity of a region.
9. Determination of Iodine value in water.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
OBJECT ORIENTED PROGRAMMING IN C++ LAB

Course Code: BTB 222 Credit Units: 01

Software Required: Turbo C++

- Creation of objects in programs and solving problems through them.
- Different use of private, public member variables and functions and friend functions.
- Use of constructors and destructors.
- Operator overloading
- Use of inheritance in and accessing objects of different derived classes.
- Polymorphism and virtual functions (using pointers).
- File handling.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>Mid Term</td>
<td>Attendance</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
ELECTRICAL SCIENCE LAB

Course Code: BTB 223 Credit Units: 01

List of Experiments

1. To verify KVL & KCL in the given network.
2. To verify Superposition Theorem.
3. To verify Maximum Power Transfer Theorem.
4. To verify Reciprocity Theorem.
5. To determine and verify RTh, VTh, RN, IN in a given network.
6. To perform open circuit & short circuit test on a single-phase transformer.
7. To study transient response of a given RLC Circuit.
8. To perform regulation, ratio & polarity test on a single-phase transformer.
9. To measure power & power factor in a three phase circuit by two wattmeter method.
10. To measure power & power factor in a three phase load using three ammeters & three voltmeter method.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Attendance</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>05</td>
</tr>
</tbody>
</table>

Viva
ENGLISH

Course Code: BTB 240 Credit Units: 03

Course Objective:
The course is intended to give a foundation of English Language. The literary texts are intended to help students to inculcate creative & aesthetic sensitivity and critical faculty through comprehension, appreciation and analysis of the prescribed literary texts. It will also help them to respond from different perspectives.

Course Contents:

Module I: Vocabulary
Use of Dictionary
Use of Words: Diminutives, Homonyms & Homophones

Module II: Essentials of Grammar - I
Articles
Parts of Speech
Tenses

Module III: Essentials of Grammar - II
Sentence Structure
Subject -Verb agreement
Punctuation

Module IV: Communication
The process and importance
Principles & benefits of Effective Communication

Module V: Spoken English Communication
Speech Drills
Pronunciation and accent
Stress and Intonation

Module VI: Communication Skills-I
Developing listening skills
Developing speaking skills

Module VII: Communication Skills-II
Developing Reading Skills
Developing writing Skills

Module VIII: Written English communication
Progression of Thought/ideas
Structure of Paragraph
Structure of Essays

Module IX: Short Stories
Of Studies, by Francis Bacon
Dream Children, by Charles Lamb
The Necklace, by Guy de Maupassant
A Shadow, by R.K.Narayan
Glory at Twilight, Bhabani Bhattacharya

Module X: Poems
All the Worlds a Stage Shakespeare
To Autumn Keats
O! Captain, My Captain. Walt Whitman
Where the Mind is Without Fear Rabindranath Tagore
Psalms of Life H.W. Longfellow
Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>A</th>
<th>CT</th>
<th>HA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>05</td>
<td>15</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Madhulika Jha, Echoes, Orient Long Man
- Successful Communications, Malra Treece (Allyn and Bacon)
- Effective Technical Communication, M. Ashraf Rizvi.
Course Objective:
To enable the students:
Understand the process of problem solving and creative thinking.
Facilitation and enhancement of skills required for decision-making.

Course Contents:

Module I: Thinking as a tool for Problem Solving
What is thinking: The Mind/Brain/Behaviour
Critical Thinking and Learning:
Making Predictions and Reasoning
Memory and Critical Thinking
Emotions and Critical Thinking
Thinking skills

Module II: Hindrances to Problem Solving Process
Perception
Expression
Emotion
Intelect
Work environment

Module III: Problem Solving
Recognizing and Defining a problem
Analyzing the problem (potential causes)
Developing possible alternatives
Evaluating Solutions
Resolution of problem
Implementation
Barriers to problem solving:
- Perception
- Expression
- Emotion
- Intelect
- Work environment

Module IV: Plan of Action
Construction of POA
Monitoring
Reviewing and analyzing the outcome

Module V: Creative Thinking
Definition and meaning of creativity
The nature of creative thinking
- Convergent and Divergent thinking
- Idea generation and evaluation (Brain Storming)
- Image generation and evaluation
- Debating
The six-phase model of Creative Thinking: ICEDIP model

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer
Text & References:

- Michael Steven: How to be a better problem solver, Kogan Page, New Delhi, 1999
- Geoff Petty: How to be better at creativity; Kogan Page, New Delhi, 1999
- Phil Lowe Koge Page: Creativity and Problem Solving, New Delhi, 1996
Course Code: BTB 244 Credit Units: 02

Course Objective:
To enable the students to overcome the fear of speaking a foreign language and take position as a foreigner speaking French.
To make them learn the basic rules of French Grammar.

Course Contents:

Module A: pp.38 – 47: Unité 3: Objectif 3, 4, 5, 6

Module B: pp. 47 to 75 Unité 4, 5

Contenu lexical: Unité 3: Organiser son temps
1. donner/demander des informations sur un emploi du temps, un horaire SNCF – Imaginer un dialogue
2. rédiger un message/ une lettre pour …
 i) prendre un rendez-vous/ accepter et confirmer/ annuler
 ii) inviter/accepter/refuser
3. Faire un programme d’activités
 imaginer une conversation téléphonique/un dialogue
 Propositions- interroger, répondre

Unité 4: Découvrir son environnement
1. situer un lieu
2. s’orienter, s’informer sur un itinéraire.
3. Chercher, décrire un logement
4. connaître les rythmes de la vie

Unité 5 : s’informer
1. demander/donner des informations sur un emploi du temps passé.
2. donner une explication, exprimer le doute ou la certitude.
3. découvrir les relations entre les mots
4. savoir s’informer

Contenu grammatical:
1. Adjectifs démonstratifs
2. Adjectifs possessifs/exprimer la possession à l’aide de :
 i. « de » ii. A+nom/pronom disjoint
3. Conjugaison pronominale – négative, interrogative -
 construction à l’infinitif
4. Impératif/exprimer l’obligation/l’interdiction à l’aide de « il
 faut…. »/ «il ne faut pas… »
5. passé composé
6. Questions directes/indirectes

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1
GERMAN – II

Course Code: BTB 245 Credit Units: 02

Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany
Introduction to Grammar to consolidate the language base learnt in Semester I

Course Contents:

Module I: Everything about Time and Time periods
Time and times of the day.
Weekdays, months, seasons.
Adverbs of time and time related prepositions

Module II: Irregular verbs
Introduction to irregular verbs like to be, and others, to learn the conjugations of the same, (fahren, essen, lessen, schlafen, sprechen und ähnliche).

Module III: Separable verbs
To comprehend the change in meaning that the verbs undergo when used as such
Treatment of such verbs with separable prefixes

Module IV: Reading and comprehension
Reading and deciphering railway schedules/school time table
Usage of separable verbs in the above context

Module V: Accusative case
Accusative case with the relevant articles
Introduction to 2 different kinds of sentences – Nominative and Accusative

Module VI: Accusative personal pronouns
Nominative and accusative in comparison
Emphasizing on the universal applicability of the pronouns to both persons and objects

Module VII: Accusative prepositions
Accusative propositions with their use
Both theoretical and figurative use

Module VIII: Dialogues
Dialogue reading: ‘In the market place’
‘At the Hotel’

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
Course Objective:
To enable students acquire more vocabulary, grammar, Verbal Phrases to understand simple texts and start describing any person or object in Simple Present Tense.

Course Contents:

Module I
Revision of earlier modules.

Module II
Some more AR/ER/IR verbs. Introduction to root changing and irregular AR/ER/IR ending verbs

Module III
More verbal phrases (eg, Dios Mio, Que lastima etc), adverbs (bueno/malo, muy, mucho, bastante, poco). Simple texts based on grammar and vocabulary done in earlier modules.

Module IV
Possessive pronouns

Module V
Writing/speaking essays like my friend, my house, my school/institution, myself….descriptions of people, objects etc, computer/internet related vocabulary

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español, En Directo I A
- Español Sin Fronteras
JAPANESE - II

Course Code: BTB 247 Credit Units: 02

Course Objective:
To enable the students to converse in the language with the help of basic particles and be able to define the situations and people using different adjectives.

Course Contents:

Module I: Verbs
Transitive verbs, intransitive verbs

Module II: More prepositions
More particles, articles and likes and dislikes.

Module III: Terms used for instructions
No parking, no smoking etc.

Module IV: Adverbs
Different adverbial expression.

Module V: Invitations and celebrations
Giving and receiving presents,
Inviting somebody for lunch, dinner, movie and how to accept and refuse in different ways

Module VI: Comprehension’s
Short essay on Family, Friend etc.

Module VII: Conversations
Situational conversations like asking the way, At a post office, family

Module VIII: Illness
Going to the doctor, hospital etc.

Learning Outcome
➢ Students can speak the language describing above-mentioned topics.

Methods of Private study /Self help
➢ Handouts, audio-aids, and self-do assignments.
➢ Use of library, visiting and watching movies in Japan and culture center every Friday at 6pm.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

Text:
- Teach yourself Japanese

References:
- Shin Nihongo no kiso 1
Course Objective:
Chinese is a tonal language where each syllable in isolation has its definite tone (flat, falling, rising and rising/falling), and same syllables with different tones mean different things. When you say, “ma” with a third tone, it mean horse and “ma” with the first tone is Mother. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Drills
Practice reading aloud
Observe Picture and answer the question.
Tone practice.
Practice using the language both by speaking and by taking notes.
Introduction of basic sentence patterns.
Measure words.
Glad to meet you.

Module II
Where do you live?
Learning different colors.
Tones of “bu”
Buying things and how much it costs?
Dialogue on change of money.
More sentence patterns on Days and Weekdays.
How to tell time. Saying the units of time in Chinese. Learning to say useful phrases like – 8:00, 11:25, 10:30 P.M. everyday, afternoon, evening, night, morning 3:58, one hour, to begin, to end .. etc.
Morning, Afternoon, Evening, Night.

Module III
Use of words of location like-li, wais hang, xia
Furniture – table, chair, bed, bookshelf, .. etc.
Description of room, house or hostel room.. eg what is placed where and how many things are there in it?
Review Lessons – Preview Lessons.
Expression ‘yao”, “xiang” and “yaoshi” (if).
Days of week, months in a year etc.
I am learning Chinese. Is Chinese difficult?

Module IV
Counting from 1-1000
Use of “chang-chang”.
Making an Inquiry – What time is it now? Where is the Post Office?
Days of the week. Months in a year.
Use of Preposition – “zai”, “gen”.
Use of interrogative pronoun – “duoshao” and “ji”.
“Whose”?? Sweater etc is it?
Different Games and going out for exercise in the morning.

Module V
The verb “qu”
– Going to the library issuing a book from the library
– Going to the cinema hall, buying tickets
– Going to the post office, buying stamps
– Going to the market to buy things.. etc
– Going to the buy clothes …. Etc.
Hobby. I also like swimming.
Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- “Elementary Chinese Reader Part I” Lesson 11-20
Course Objective:
Cell biology plays a central role to connect the different fields of biotechnology which is highly interdisciplinary. It incorporates elements of biology, maths, physics and chemistry with combination of computers and electronics. The object of the present course is to understand the structure and function of the cellular and sub cellular components of cells and tissues with the help of recent techniques.

Course Contents:

Module I
The cell theory, pre cellular evolution, prokaryotic and eukaryotic cells.

Module II
Cell cycle - molecular events, cell division, mitosis and meiosis.

Module III
Cellular organelles - structure and function of cell wall, plasma membrane nucleus, Mitochondria, Chloroplast, Nucleus, lysosomes, peroxisomes, golgi bodies, and transport across membranes.

Module IV
Cell locomotion- cytoskeleton, structure and function of cilia and flagella.

Module V
Cellular signaling –general mechanism of signaling and structures of the various types of receptors.

Module VI
Types of cancer, etiology of cancer, metastasis, cytological role of p53 and p21 genes in cancer development.

Module VII
Apoptosis.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Cell and Molecular Biology, Gerald Karp, John Wiley and Sons Inc.
- Cell and Molecular Biology, DeRobertis, B.I. Publication Pvt. Ltd.

References:
- Cell in Development and Inheritance, E.B. Wilson, Macmillan
- Developmental Biology, S.F. Gilbert, Sinauer Associates Inc.
BIOCHEMISTRY - I

Course Code: BTB 302 Credit Units: 03

Course Objective:
The course aims on understanding of the relationships between structure and function in the major classes of biopolymers. It augurs understanding on central metabolic process and the role of enzymes in modulating pathways. The theoretical background of biochemical systems helps to interpret the results of laboratory experiments.

Course Contents:

Module I
Introduction aims and scope
Chemical foundations of Biology - Properties of water, acids, bases and buffers, covalent bonds, Non-covalent interactions in biological systems.

Module II
Introduction to biomolecules - Carbohydrates - Sugars; Polysaccharides Lipids - classification, structure and function. Lipids and biological membranes, Lipid linked proteins and lipoproteins.

Module III
Metabolism and bioenergetics - First and second law, free energy and chemical equilibrium, Organic reaction mechanisms, Design of metabolism-concept of free energy, ATP-ADP cycle. Cellular energy transactions - role of mitochondria and chloroplast

Module IV
Carbohydrate metabolism-glycolysis pathway and reactions, Glycogen breakdown and synthesis, control of glycogen metabolism, glycogen storage and its diseases, Citric acid cycle - Overview, Metabolic sources of Acetyl Co-A, enzymes and regulation, The amphibolic nature of the Citric acid cycle Electron transport chain and oxidative phosphorylation -mitochondrion and electron transport, phosphorylation and control of ATP production Gluconeogenesis, The glyoxylate pathway, Pentose phosphate pathway

Module V
Lipid metabolism - Lipid digestion, absorption and transport, fatty acid oxidation, ketone bodies, fatty acid biosynthesis, regulation of fatty acid metabolism. Cholesterol and Arachidonic Acid metabolism, Phospholipids, Sphingolipids and Glycolipids

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Biochemistry, L. Stryer, W.H. Freeman and Company
- Tools of Biochemistry, T.G. Cooper, John Wiley and Sons Inc.

References:
- Biochemical calculations, I.H. Segal. Publisher, John Wiley and Sons
- Devlin’s Textbook of Biochemistry with Clinical correlations, John Wiley and Sons Inc.
MICROBIOLOGY

Course Code: BTB 303 Credit Units: 04

Course Objective:
The course imparts the knowledge of different types of microorganisms that are invisible to our naked eyes. Discovery origin and evaluation of different forms of bacteria, fungi, protozoa and viruses constitute the basics of biotechnology.

Course Contents:

Module I
Introduction and historical perspective - Discovery of the microbial world, controversy over spontaneous generation, role of microorganisms in transformation of organic matter and in the causation of diseases, development of pure culture methods. Methods in Microbiology -Principles of microbial nutrition, Culture media, Theory and practice of sterilization, pure culture techniques.

Module II
Prokaryotic structure and function - functional anatomy of bacteria: cell envelope, cell wall, cytoplasmic membrane, capsule, surface appendages, cytoplasm and cytoplasmic inclusions. Growth - The definition of growth, mathematical expression of growth, growth curve, measurement of growth, synchronous growth, continuous culture, culture collection and maintenance of cultures.

Module III
Systematics and taxonomy - new approaches to bacterial taxonomy, classification including ribotyping, ribosomal RNA sequencing, characteristics of primary domains, taxonomy, nomenclature and Bergey's manual.

Module IV
Metabolic Diversity among microorganisms - photosynthesis in microorganisms, role of bacteriochlorophylls, carotenoids and phycobilins, Chemolithotrophy, hydrogen-iron-nitrite-oxidizing bacteria, nitrate and sulphate reduction, methanogenesis and acetogenesis, Fermentations, nitrogen fixation, plant microbe interactions (mycorrhizae).

Module V: Archaea
Archaea as earliest life forms, thermophiles, psychrophiles, halophiles, alkalophiles, acidophiles, hyperthermophiles Viruses: Bacterial, animal; structure of viruses; Reproduction and life cycle of RNA and DNA viruses; Viroids and prions. Algae and Fungi: Classification and Reproduction.

Module VI
Host-parasite relationship - Normal micro flora of skin, oral cavity, gastrointestinal tract, Respiratory infections; entry of pathogens into the host, types of toxins (Exo, endo, entro) and their mode of actions, Microbial pathogenesis -Disease reservoirs; Epidemiological terminologies; Infectious disease transmission; Sexually transmitted disease including AIDS, Food and water- borne diseases; pathogenic fungi.

Module VII
Chemotherapy/antibiotics -Antimicrobial agents, sulfa drugs, antibiotics -penicillin and cephalosporins, broad spectrum antibiotics, antifungal antibiotics; mode of action.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/ Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- General Microbiology, R.Y. Stanier, J.L. Ingraham, M.L.Wheelis and P.R. Painter, Macmillian
• The microbes – An Introduction to their Nature and Importance, P.V. Vandenmark and B.L. Batzing, Benjamin Cummings.

References:
• The Microbial World, Roger Y. Stanier, Prentice Hall
• Microbiology, Tortora, Funke and Chase, Benjamin & Cummings
• Principles of Fermentation Technology, Salisbury, Whitaker and Hall, Aditya Books Pvt. Ltd.
• Industrial Microbiology, Casida, New Age International
• Industrial Microbiology, Prescott and Dunn, C.B.S. Publishers Principles of Microbiology, R.M. Atlas, WMC. Brown Publisher.
BASICS OF COMPUTER SYSTEMS AND PROGRAMMING

Course Code: BTB 304 Credit Units: 03

Course Objective:
The aim of the present course is to enable the students to acquire and demonstrate competence in information technology and information skills so that they can use world processor to produce well formatted and organized documents as well as spread sheets to produce numeric models and graphical representation of data.

Course Contents:

Module I
Introduction to computer science - Overview and history of computing; Data storage; Data manipulation; Operating systems and networks.

Module II
Introduction to number of systems: binary, Octal, Hexadecimal;

Module III
Introduction to C and C++, Control structures, Data files, Functions, Arrays

Module IV
Introduction to object oriented programming.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Introduction to C++ for Engineers and Scientists, Prentice-Hall.

References:
BASIC BIOANALYTICAL TECHNIQUES

Course Code: BTB 305 Credit Units: 03

Course Objective:
The students will be exposed to basic concepts related with techniques and instrumentation widely used in Biotechnology.

Course Contents:

Module I: Solution and Buffers
Preparation of solutions, concept of pH and buffer, types of buffers and their preparation, pH meter.

Module II: Centrifugation
Principle of centrifugation, rotors, different types of centrifuges, preparative and analytical centrifugation, ultra centrifugation.

Module III: Microscopy
Optical microscopy, Bright field, Dark field, phase contrast and fluorescence microscopy.

Module IV: Radioisotope techniques
Study of radioisotopes in biological samples, proportional and GM counter, scintillation counters, autoradiography, radio–immunoassay.

Module V
Cell Disruption techniques, ultra filtration, dialysis and reverse osmosis.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Principles of Physical Biochemistry, K.E. Van Holde, Prentice Hall.
- Essentials of Biophysics, P. Narayanan, New Age International Publishers

References:
- Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes, J.F. Van Impe, Kluwer Academic
- Crystal Structure Analysis, J.P. Glusker and K.N. Trueblood, Oxford University Press
- Crystallography made Crystal Clear, G. Rhodes, Academic Press
- Modern Spectroscopy, J.M. Hollas, John Wiley and Son Ltd.
- NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, H. Gunther, John Wiley and Sons Ltd.
CELL BIOLOGY LAB

Course Code: BTB 320 Credit Units: 01

Course Contents:

Module I
Microscopy: Light microscopy, Bright field, Phase contrast

Module II
Study of chromoplasts, chloroplast in plant cell.

Module III
Study of chromoplasts, chloroplasts in various plant cells.

Module IV: Cell Division
Mitosis and Meiosis

Module V
Study of permanent slides of types of cancer

Module VI
Study of apoptosis

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
BIOCHEMISTRY LAB - I

Course Code: BTB 321 Credit Units: 02

Course Contents:

Module I
Colorimetric determination of pK.

Module II
Colour reactions of sugars. (Molischs test, iodine test, Saliwanoff test, Fehlings test, Benedicts test, Bials test).

Module III
Cholestrol estimation
Estimation of free fatty acids
Estimation of iodine number.

Examination Scheme:

<table>
<thead>
<tr>
<th></th>
<th>IA</th>
<th></th>
<th></th>
<th>EE</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>15</td>
<td>10</td>
<td>05</td>
<td>35</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment/Spotting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Contents:

1. Preparation of solid and liquid media.
2. Isolation and maintenance of organisms by plating, streaking and serial dilution.
3. Preparation of slant cultures.
4. Growth curve measurement of bacterial population by turbidometry.
7. Microscopic examination of bacteria by gram staining.
8. Endospore staining.
9. Capsule staining.
10. Isolation and identification of Rhizobium from root nodules.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>Mid Term Viva</td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td>Attendance</td>
<td>Practical Record</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
BASICS OF COMPUTER SYSTEMS AND PROGRAMMING LAB

Course Code: BTB 323 Credit Units: 01

Course Contents:

Module I
Simple programs for matrix addition, multiplication, transposition, string searching, binary conversion.

Module II
Programming for control structures-use of control structures in relevant mathematical problems.

Module III
Memory reallocation -programming to interchange the values of certain integers.

Module IV
Creation of classes of objects and to use that class to regenerate another class.

Module V
Inheritance and polymorphism -Creation of abstract classes

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
COMMUNICATION SKILLS - I

Course Code: BTB 341 Credit Units: 01

Course Objective:
To form written communication strategies necessary in the workplace.

Course Contents:

Module I: Introduction to Writing Skills
Effective Writing Skills
Avoiding Common Errors
Paragraph Writing
Note Taking
Writing Assignments

Module II: Letter Writing
Types
Formats

Module III
Memo
Agenda and Minutes
Notice and Circulars

Module IV: Report Writing
Purpose and Scope of a Report
Fundamental Principles of Report Writing
Project Report Writing
Summer Internship Reports

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>CAF</th>
<th>V</th>
<th>GD</th>
<th>GP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF – Communication Assessment File
GD – Group Discussion
GP – Group Presentation

Text & References:

- Business Communication, Raman –Prakash, Oxford
- Creative English for Communication, Krishnaswamy N, Macmillan
- Textbook of Business Communication, Ramaswami S, Macmillan
- Working in English, Jones, Cambridge
- Effective Writing, Withrow, Cambridge
- Writing Skills, Coe/Rycroft/Ernest, Cambridge
- Welcome!, Jones, Cambridge
Course Objective:
This course provides practical guidance on:
Enhancing personal effectiveness and performance through effective interpersonal communication
Enhancing their conflict management and negotiation skills

Course Contents:

Module I: Interpersonal Communication: An Introduction
Importance of Interpersonal Communication
Types – Self and Other Oriented
Rapport Building – NLP, Communication Mode
Steps to improve Interpersonal Communication

Module II: Behavioural Communication
Meaning and Nature of behavioural communication
Persuasion, Influence, Listening and Questioning
Guidelines for developing Human Communication skills
Relevance of Behavioural Communication for personal and professional development

Module III: Interpersonal Styles
Transactional Analysis
Life Position/Script Analysis
Games Analysis
Interactional and Transactional Styles

Module IV: Conflict Management
Meaning and nature of conflicts
Styles and techniques of conflict management
Conflict management and interpersonal communication

Module V: Negotiation Skills
Meaning and Negotiation approaches (Traditional and Contemporary)
Process and strategies of negotiations
Negotiation and interpersonal communication

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Text & References:

- Julia T. Wood. Interpersonal Communication everyday encounter
- Harvard Business School, Effective Communication: United States of America
- Foster John, Effective Writing Skills: Volume-7, First Edition 2000, Institute of Public Relations (IPR)
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.
FRENCH - III

Course Code: BTB 344 Credit Units: 02

Course Objective:
• To provide the students with the know-how
• To master the current social communication skills in oral and in written.
• To enrich the formulations, the linguistic tools and vary the sentence construction without repetition.

Course Contents:
Module B: pp. 76 – 88 Unité 6
Module C: pp. 89 to 103 Unité 7

Contenu lexical:
Unité 6: se faire plaisir
1. acheter : exprimer ses choix, décrire un objet (forme, dimension, poids et matières) payer
2. parler de la nourriture, deux façons d’exprimer la quantité, commander un repas au restaurant
3. parler des différentes occasions de faire la fête

Unité 7: Cultiver ses relations
1. maîtriser les actes de la communication sociale courante (Salutations, présentations, invitations, remerciements)
2. annoncer un événement, exprimer un souhait, remercier, s’excuser par écrit.
3. caractériser une personne (aspect physique et caractère)

Contenu grammatical:
1. accord des adjectifs qualificatifs
2. articles partitifs
3. Négations avec de, ne…rien/personne/plus
4. Questions avec combien, quel…
5. expressions de la quantité
6. ne…plus/toujours - encore
7. pronoms compléments directs et indirects
8. accord du participe passé (auxiliaire « avoir ») avec l’objet direct
9. Impératif avec un pronom complément direct ou indirect
10. construction avec « que » - Je crois que/ Je pense que/ Je sais que

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
• le livre à suivre : Campus: Tome 1
GERMAN - III

Course Code: BTB 345 Credit Units: 02

Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany.

Course Contents:

Module I: Modal verbs
Modal verbs with conjugations and usage
Imparting the finer nuances of the language

Module II: Information about Germany (ongoing)
Information about Germany in the form of presentations or “Referat”– neighbors, states and capitals, important cities and towns and characteristic features of the same, and also a few other topics related to Germany.

Module III: Dative case
Dative case, comparison with accusative case
Dative case with the relevant articles
Introduction to 3 different kinds of sentences – nominative, accusative and dative

Module IV: Dative personal pronouns
Nominative, accusative and dative pronouns in comparison

Module V: Dative prepositions
Dative preposition with their usage both theoretical and figurative use

Module VI: Dialogues
In the Restaurant,
At the Tourist Information Office,
A telephone conversation

Module VII: Directions
Names of the directions
Asking and telling the directions with the help of a roadmap

Module VIII: Conjunctions
To assimilate the knowledge of the conjunctions learnt indirectly so far

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
Course Code: BTB 346 Credit Units: 02

Course Objective:
To enable students acquire knowledge of the Set/definite expressions (idiomatic expressions) in Spanish language and to handle some Spanish situations with ease.

Course Contents:

Module I
Revision of earlier semester modules
Set expressions (idiomatic expressions) with the verb Tener, Poner, Ir....
Weather

Module II
Introduction to Gustar…and all its forms. Revision of Gustar and usage of it

Module III
Translation of Spanish-English; English-Spanish. Practice sentences.
How to ask for directions (using estar)
Introduction to IR + A + INFINITIVE FORM OF A VERB

Module IV
Simple conversation with help of texts and vocabulary
En el restaurante
En el instituto
En el aeropuerto

Module V
Reflexives

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español, En Directo I A
- Español Sin Fronteras -Nivel Elemental
Course Objective:
To enable the students to converse in the language with the help of basic verbs and to express themselves effectively and narrate their everyday short encounters. Students are also given projects on Japan and Japanese culture to widen their horizon further.
Note: The Japanese script is introduced in this semester.

Course Contents:

Module I: Verbs
Different forms of verbs: present continuos verbs etc

Module II
More Adverbs and adverbial expressions

Module III: Counters
Learning to count different shaped objects,

Module IV: Tenses
Past tense, Past continuous tense.

Module V: Comparison
Comparative and Superlative degree

Module VI: Wishes and desires
Expressing desire to buy, hold, possess. Usage in negative sentences as well.
Comparative degree, Superlative degree.

Module VII: Appointment
Over phone, formal and informal etc.

Learning Outcome
➢ Students can speak the language and can describe themselves and situations effectively
➢ They also gain great knowledge in terms of Japanese lifestyle and culture, which help them at the time of placements.

Methods of Private study /Self help
➢ Handouts, audio-aids, and self-do assignments.
➢ Use of library, visiting and watching movies in Japan and culture center every Friday at 6pm.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

Text:
- Teach yourself Japanese

References:
- Shin Nihongo no kiso 1
Course Objective:
Foreign words are usually imported by translating the concept into Chinese, the emphasis is on the meaning rather than the sound. But the system runs into a problem because the underlying name of personal name is often obscure so they are almost always transcribed according to their pronunciation alone. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Drills
Dialogue practice
Observe picture and answer the question.
Introduction of written characters.
Practice reading aloud
Practice using the language both by speaking and by taking notes.
Character writing and stroke order

Module II
Measure words
Position words e.g. inside, outside, middle, in front, behind, top, bottom, side, left, right, straight.
Directional words – beibian, xibian, nanbian, dongbian, zhongjian.
Our school and its different building locations.
What game do you like?
Difference between “hii” and “neng”, “keyi”.

Module III
Changing affirmative sentences to negative ones and vice versa
Human body parts.
Not feeling well words e.g. ; fever, cold, stomach ache, head ache.
Use of the modal particle “le”
Making a telephone call
Use of “jiu” and “cal” (Grammar portion)
Automobiles e.g. Bus, train, boat, car, bike etc.
Traveling, by train, by airplane, by bus, on the bike, by boat.. etc.

Module IV
The ordinal number “di”
“Mei” the demonstrative pronoun e.g. mei tian, mei nian etc.
use of to enter to exit
Structural particle “de” (Compliment of degree).
Going to the Park.
Description about class schedule during a week in school.
Grammar use of “li” and “cong”.
Comprehension reading followed by questions.

Module V
Persuasion-Please don’t smoke.
Please speak slowly
Praise – This pictorial is very beautiful
Opposites e.g. Clean-Dirty, Little-More, Old-New, Young-Old, Easy-Difficult, Boy-Girl, Black-White, Big-Small,
Slow-Fast … etc.
Talking about studies and classmates
Use of “it doesn’t matter”
Enquiring about a student, description about study method.
Grammar: Negation of a sentence with a verbal predicate.
Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- “Elementary Chinese Reader Part I, Part-2” Lesson 21-30
TERM PAPER

Course Code: BTB 330 Credit Units: 03

METHODOLOGY
A term (or research) paper is primarily a record of intelligent reading in several sources on a particular subject. The students will choose the topic at the beginning of the session in consultation with the faculty assigned. The progress of the paper will be monitored regularly by the faculty. At the end of the semester the detailed paper on the topic will be submitted to the faculty assigned. The evaluation will be done by Board of examiners comprising of the faculties.

GUIDELINES FOR TERM PAPER
The procedure for writing a term paper may consists of the following steps:
1. Choosing a subject
2. Finding sources of materials
3. Collecting the notes
4. Outlining the paper
5. Writing the first draft
6. Editing & preparing the final paper

1. Choosing a Subject
The subject chosen should not be too general.

2. Finding Sources of materials
a) The material sources should be not more than 10 years old unless the nature of the paper is such that it involves examining older writings from a historical point of view.
b) Begin by making a list of subject-headings under which you might expect the subject to be listed.
c) The sources could be books and magazines articles, news stories, periodicals, scientific journals etc.

3. Collecting the notes
Skim through sources, locating the useful material, then make good notes of it, including quotes and information for footnotes.
a) Get facts, not just opinions. Compare the facts with author's conclusion.
b) In research studies, notice the methods and procedures, results & conclusions.
c) Check cross references.

4. Outlining the paper
a) Review notes to find main sub-divisions of the subject.
b) Sort the collected material again under each main division to find sub-sections for outline so that it begins to look more coherent and takes on a definite structure. If it does not, try going back and sorting again for main divisions, to see if another general pattern is possible.

5. Writing the first draft
Write the paper around the outline, being sure that you indicate in the first part of the paper what its purpose is. You may follow the following:
a) statement of purpose
b) main body of the paper
c) statement of summary and conclusion
Avoid short, bumpy sentences and long straggling sentences with more than one main ideas.

6. Editing & Preparing the final Paper
a) Before writing a term paper, you should ensure you have a question which you attempt to answer in your paper. This question should be kept in mind throughout the paper. Include only information/ details/ analyses of relevance to the question at hand. Sometimes, the relevance of a particular section may be clear to you but not to your readers. To avoid this, ensure you briefly explain the relevance of every section.
b) Read the paper to ensure that the language is not awkward, and that it "flows" properly.
c) Check for proper spelling, phrasing and sentence construction.
d) Check for proper form on footnotes, quotes, and punctuation.
e) Check to see that quotations serve one of the following purposes:
 (i) Show evidence of what an author has said.
 (ii) Avoid misrepresentation through restatement.
(iii) Save unnecessary writing when ideas have been well expressed by the original author.

f) Check for proper form on tables and graphs. Be certain that any table or graph is self-explanatory.

Term papers should be composed of the following sections:
1) Title page
2) Table of contents
3) Introduction
4) Review
5) Discussion & Conclusion
6) References
7) Appendix

Generally, the introduction, discussion, conclusion and bibliography part should account for a third of the paper and the review part should be two thirds of the paper.

Discussion
The discussion section either follows the results or may alternatively be integrated in the results section. The section should consist of a discussion of the results of the study focusing on the question posed in the research paper.

Conclusion
The conclusion is often thought of as the easiest part of the paper but should by no means be disregarded. There are a number of key components which should not be omitted. These include:
 a) summary of question posed
 b) summary of findings
 c) summary of main limitations of the study at hand
 d) details of possibilities for related future research

References
From the very beginning of a research project, you should be careful to note all details of articles gathered. The bibliography should contain ALL references included in the paper. References not included in the text in any form should NOT be included in the bibliography.
The key to a good bibliography is consistency. Choose a particular convention and stick to this.

Bibliographical conventions
Monographs

Edited Volumes
[(eds.) is used when there is more than one editor; and (ed.) where there is only one editor. In German the abbreviation used is (Hrsg.) for Herausgeber].

Edited Articles

Journal Articles

Electronic Book

Electronic Journal Articles

Other Websites
Verterhus, S.A. (n.y.), Anglicisms in German car advertising. The problem of gender assignment [HTML...

Unpublished Papers

Unpublished Theses/ Dissertations

Appendix
The appendix should be used for data collected (e.g. questionnaires, transcripts, ...) and for tables and graphs not included in the main text due to their subsidiary nature or to space constraints in the main text.

Assessment Scheme:

Continuous Evaluation: 40%
(Based on abstract writing, interim draft, general approach, research orientation, readings undertaken etc.)

Final Evaluation: 60%
(Based on the organization of the paper, objectives/ problem profile/ issue outlining, comprehensiveness of the research, flow of the idea/ ideas, relevance of material used/ presented, outcomes vs. objectives, presentation/ viva etc.)
BIOCHEMISTRY - II

Course Code: BTB 401 Credit Units: 03

Course Objective:
The course aims on understanding of the relationships between structure and function in the major classes of biopolymers. It augurs understanding on central metabolic process and the role of enzymes in modulating pathways. The theoretical background of biochemical systems helps to interpret the results of laboratory experiments.

Course Contents:

Module I
Proteins - Amino acids and peptides - classification, chemical reactions and physical properties. Introduction to protein structure and function. Glycoproteins -structure and function, Vitamins and Coenzymes: structure and function of water soluble vitamins.
Enzymes - Introduction to kinetic and catalytic mechanisms of enzymes; Regulation of enzyme activity; Effects of physical parameters on enzyme activity, enzyme inhibitors – types of inhibition.

Module II
Nucleic acids - nitrogenous bases, nucleotides, types, structure and properties of nucleic acids

Module III
Amino acid metabolism - Amino acid deamination, urea cycle, biosynthesis and breakdown of nutritionally non-essential amino acids (asparagines, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, Tyrosine. Specialized Products of Amino Acids, Nitrogen fixation

Module IV
Nucleotide Metabolism -structure and metabolism of purines and pyrimidines, biosynthesis of nucleotide coenzymes (NAD, NADP, FAD, FMN; Catabolism of heam and clinical significance of bilirubin.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
• Biochemistry, L. Stryer, W.H. Freeman and Company
• Tools of Biochemistry, T.G. Cooper, John Wiley and Sons Inc.

References:
• Cellular Biophysics I & II, Thomas F. Weiss 1995, MIT Press
• Biochemical calculations, I.H. Segal. Publisher, John Wiley and Sons
• Biochemistry, C.K. Mathews, K.E. Van Holde and K.G. Ahern, Benjamin / Cummings.
• Devlin’s Textbook of Biochemistry with Clinical correlations, John Wiley and Sons Inc.
GENETICS

Course Code: BTB 402 Credit Units: 03

Course Objective:
The objective of the course is to focus on the basic principles of genetics incorporating the concepts of classical, molecular and population genetics. Compilation is required for recent advances in genetic principles for strong foundation in Biotechnology.

Course Contents:

Module I
The science of genetics - introduction, history, classical and molecular genetics, role of genetics in medicine, agriculture and society.

Module II: Mendelism

Module III
Numerical changes and structural changes in chromosomes with emphasis on human disease/syndromes/plant breeding and genetic counseling.

Module IV
Mutation and mutagenic agents, types of mutations, economic importance of mutation

Module V
Concept of gene – classical and modern, psendoallelism, position effect, intragenic crossing over & complementation (cistron, recon & nutron) Benzer’s work on r II locus in T2 bacteriophage

Module VI: Genetics of Population
Hardy- Weinburg Law and its deviations.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Genetics, P.K. Gupta, Rastogi Publication
- Concepts of Genetics (Sixth Edition), William S. Klug and Michael R, Cummings, Pearson Education

References:
- Genetics, M.W. Strickberger, Prentice Hall College Division
- Genetics, P.J.Russell, Benjamin/Cummings
- Principles of Genetics, E J Gardner, John Wiley & Sons Inc.
- Genetics, R. Goodenough, International Thomson Publishing
- Introduction to Genetic Analysis, A.J. F. Griffiths, W.H. Freeman and Company
- Principles of Genetics, D.P. Snustad & M.J. Simmons, John Wiley and Sons Inc.
METHODS AND INSTRUMENTATION IN BIOTECHNOLOGY

Course Code: BTB 403 Credit Units: 03

Course Objective:
The students will be exposed to techniques and instruments that are used in biotech industries.

Course Contents:

Module I: Electrophoresis
Gel electrophoresis, SDS-PAGE, isoelectric focusing, two-dimensional electrophoresis, immuno electrophoresis, capillary electrophoresis

Module II: Chromatography
Paper, TLC, gel filtration, ion-exchange chromatography, affinity chromatography, HPLC and GLC

Module III: Spectroscopy
UV and visible spectroscopy, Infrared and Atomic absorption spectroscopy, fluorescence spectroscopy, Mass Spectrometry, MALDITOF, Nuclear Magnetic Resonance and Electron Spin Resonance spectroscopy,

Module IV
X-ray diffraction and X-ray Crystallography

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Principles of Physical Biochemistry, K.E. Van Holde, Prentice Hall.
- Essentials of Biophysics, P. Narayanan, New Age International Publishers

References:
- Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes, J.F. Van Impe, Kluwer Academic
- Crystal Structure Analysis, J.P. Glusker and K.N. Trueblood, Oxford University Press
- Crystallography made Crystal Clear, G. Rhodes, Academic Press
- Modern Spectroscopy, J.M. Hollas, John Wiley and Son Ltd.
- NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, H. Gunther, John Wi
DATA STRUCTURE AND ALGORITHMS

Course Code: BTB 404 Credit Units: 03

Course Objective:
It helps the students to utilize the information acquired through electronic media to access biological information network and data bases in order to understand biological functions and then to evaluate genetic diseases, their causes and risks related to human kind.

Course Contents:

Module I: Introduction

Module II: Programming strategies
Objects and ADTs with example, Constructors and destructors, Data structure, methods, Pre and post conditions, C conventions, Error handling, Some programming language notes.

Module III: Data structures
Arrays; lists; stacks and stack frames; Recursion -Recursive functions with example of factorial, Queue, Degeue.

Module IV: Searching
Sequential and binary search, Trees, binary search tree, complexity.

Module V: Queues
Priority queues and heaps

Module VI: Sorting
Bubble, Heap, Quick, Bin, Radix

Module VII: Searching revisited
Red-Black trees, AVL trees, general n-ary trees, hash tables; Hashing and collision resolution

Module VIII: Dynamic algorithm
Fibonacci numbers, bionomial coefficients, optimal binary search trees, matrix chain multiplication, longest common subsequence, optimal triangulation.

Module IX: Graphs
Minimum spanning tree and Dijkstra’s algorithm

Module X: Huffman encoding, FFT, Hard or intractable problems
Eulerian or Hamiltonian paths, Travelling salesman problem.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Database Design, Development and Deployment with Student CD, P. Rob and E. Semaan, McGraw-Hill/Irwin
- Schaum’s Outline of Data Structures with C++, J.R. Hubbard, McGraw Hill Trade.

References:
- Database system concepts, A. Silberschatz, P.B. Galvin and G. Gagne, John Wiley and Sons Inc.
- Introduction to Data Structures and Application, J. Tremblay and P.G. Sorensen, McGraw Hill College Division
CHEMICAL BIOLOGY

Course Code: BTB 405 Credit Units: 02

Course Objective:
Chemical biology is that branch of life science, which deals with the study and manipulation of biological systems through the application of chemical techniques and tools. It differs from the more traditional disciplines of chemistry and biology in its emphasis on integrating a wider series of experimental techniques, ranging from synthetic organic chemistry, to biochemistry, to structural, molecular, and cellular biology. Chemical biology has historical and philosophical roots in medicinal chemistry, supramolecular chemistry (particularly host-guest chemistry), bioorganic chemistry, pharmacology, genetics, biochemistry and metabolic engineering.

Course Contents:

Module I: Principles of chemical biology
Chemistry of carbohydrates, proteins and nucleic acids, strategies for identifying the cellular target of physiologically active natural products (paclitaxel, vancomycin), chemical aspects of signal transduction

Module II: Chemical reactions in living systems
Introduction to enzyme chemistry, Group transfer reactions, Substitutions, Carboxylation and decarboxylation, Isomerases, Eliminations and additions, Redox reactions (1), Redox reactions (2), Aldol and Claisen Reactions, One-carbon transfer reactions, Rearrangements

Module III: Structural chemical biology
Purine biosynthesis, polyamide biosynthesis, thiamine biosynthesis, vitamin E biosynthesis, proteases

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/ Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Chemical Biology by H. Gobind Khorana
- Chemical Biology: A practical course, Herbert Waldmann, Petra Janning, Wiley-VCH
- Foundations of Chemical Biology, C.M. Dobson, J.A. Gerrard, A.J. Pratt, Oxford Chemistry Primers
- Innovations in Chemical Biology, Sener Bilge, Springer
- Chemical biology by Stuart L. Shreiber, Tarun Kapoor, Gunther Wess, Wiley-VCH.

References:
BIOCHEMISTRY LAB - II

Course Code: BTB 420 Credit Units: 02

Course Contents:

Module I
Colour reactions of proteins (Ninhydrin test, Biuret test, Xanthoprotein test).
Estimation of proteins.

Module II
Biochemical estimation of DNA
Biochemical estimation of RNA
Quantitative determination of DNA and RNA by spectrophotometric method using UV range.
Determination of melting temperature of DNA from thermal denaturation characteristics.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th></th>
<th></th>
<th>EE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
<td>Attendance</td>
<td>Major Experiment</td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>05</td>
<td>35</td>
<td>15</td>
</tr>
</tbody>
</table>
Course Code: BTB 421 Credit Units: 02

Course Contents:

1. Study of gene interaction.
2. Study of chromosomal translocation in Rhoeo discolor.
5. Study of physical and chemical mutagens on growth of E. coli.
6. PTC test.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
METHODS AND INSTRUMENTATION IN BIOTECHNOLOGY LAB

Course Code: BTB 422 Credit Units: 01

Course Contents:

Module I
Cell disruption techniques

Module II
Centrifugation – low speed and high speed.

Module III
Spectrophotometer techniques

Module IV
Chromatography – Paper Chromatography and Thin Layer Chromatography

Module V
Electrophoresis – SDS Page and Agarose gel electrophoresis.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Course Code: BTB 423
Credit Units: 01

Course Contents:

Module I
Stack implementation through arrays, link list

Module II
Programs for recursion functions

Module III
Implementation of queues and leap structures

Module IV
Application of binary trees in pre-order, post-order and in-order evaluation

Module V
A VL tree implementation

Module VI
Optimal matrix multiplication

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>(Practical</td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td>Based)</td>
<td>Practical Record</td>
</tr>
<tr>
<td>Mid Term</td>
<td>Viva</td>
</tr>
<tr>
<td>Viva</td>
<td></td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
COMMUNICATION SKILLS - II

Course Code : BTB 441 Credit Units: 01

Course Objective:
To teach the participants strategies for improving academic reading and writing. Emphasis is placed on increasing fluency, deepening vocabulary, and refining academic language proficiency.

Course Contents:

Module I: Social Communication Skills
Small Talk
Conversational English
Appropriateness
Building rapport

Module II: Context Based Speaking
In general situations
In specific professional situations
Discussion and associated vocabulary
Simulations/Role Play

Module III: Professional Skills
Presentations
Negotiations
Meetings
Telephony Skills

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>CAF</th>
<th>V</th>
<th>GD</th>
<th>GP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF – Communication Assessment File
GD – Group Discussion
GP – Group Presentation

Text & References:

- Essential Telephoning in English, Garside/Garside, Cambridge
- Working in English, Jones, Cambridge
- Business Communication, Raman –Prakash, Oxford
- Speaking Personally, Porter-Ladousse, Cambridge
- Speaking Effectively, Jermy Comfort, et.al, Cambridge
- Business Communication, Raman –Prakash, Oxford
Course Objective:
To understand the basis of interpersonal relationship.
To understand various communication style.
To learn the strategies for effective interpersonal relationship.

Course Contents:

Module I: Understanding Relationships
Importance of relationships
Role and relationships
Maintaining healthy relationships

Module II: Bridging Individual Differences
Understanding individual differences
Bridging differences in Interpersonal Relationship – TA
Communication Styles

Module III: Interpersonal Relationship Development
Importance of Interpersonal Relationships
Interpersonal Relationships Skills
Types of Interpersonal Relationships

Module IV: Theories of Interpersonal Relationships
Theories: Social Exchange, Uncertainty Reduction Theory
Factors Affecting Interpersonal Relationships
Improving Interpersonal Relationships

Module V: Impression Management
Meaning & Components of Impression Management
Impression Management Techniques (Influencing Skills)
Impression Management Training-Self help and Formal approaches

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Text & References:

- Julia T. Wood. Interpersonal Communication everyday encounter
- Harvard Business School, Effective Communication: United States of America
- Foster John, Effective Writing Skills: Volume-7, First Edition 2000, Institute of Public Relations (IPR)
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.
Course Code: BTB 444 Credit Units: 02

Course Objective:
To enable students:
• To develop strategies of comprehension of texts of different origin
• To present facts, projects, plans with precision

Course Contents:

Module C: pp. 104 – 139: Unités 8, 9

Contenu lexical: Unité 8: Découvrir le passé
1. parler du passé, des habitudes et des changements.
2. parler de la famille, raconter une suite
d’événements/préciser leur date et leur durée.
3. connaître quelques moments de l’histoire

Unité 9: Entreprendre
1. faire un projet de la réalisation: (exprimer un besoin,
 préciser les étapes d’une réalisation)
2. parler d’une entreprise
3. parler du futur

Contenu grammatical:
1. Imparfait
2. Pronom « en »
3. Futur
4. Discours rapporté au présent
5. Passé récent
6. Présent progressif

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>
| C – Project + Presentation
| I – Interaction/Conversation Practice

Text & References:
• le livre à suivre : Campus: Tome 1
Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany.
Introduction to Advanced Grammar Language and Professional Jargon

Course Contents:

Module I: Present perfect tense
Present perfect tense, usage and applicability
Usage of this tense to indicate near past
Universal applicability of this tense in German

Module II: Letter writing
To acquaint the students with the form of writing informal letters.

Module III: Interchanging prepositions
Usage of prepositions with both accusative and dative cases
Usage of verbs fixed with prepositions
Emphasizing on the action and position factor

Module IV: Past tense
Introduction to simple past tense
Learning the verb forms in past tense
Making a list of all verbs in the past tense and the participle forms

Module V: Reading a Fairy Tale
Comprehension and narration
- Rotkäppchen
- Froschprinzessin
- Die Fremdsprache

Module VI: Genitive case
Genitive case – Explain the concept of possession in genitive
Mentioning the structure of weak nouns

Module VII: Genitive prepositions
Discuss the genitive propositions and their usage: (während, wegen, statt, trotz)

Module VIII: Picture Description
Firstly recognize the persons or things in the picture and identify the situation depicted in the picture;
Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
Course Code: BTB 446 Credit Units: 02

Course Objective:
To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations with ease.

Course Contents:

Module I
Revision of earlier semester modules
Introduction to Present Continuous Tense (Gerunds)

Module II
Translation with Present Continuous Tense
Introduction to Gustar, Parecer, Apetecer, doler

Module III
Imperatives (positive and negative commands of regular verbs)

Module IV
Commercial/business vocabulary

Module V
Simple conversation with help of texts and vocabulary
El recibimientu del hotel
En el restaurante
En la agencia de viajes
En la tienda/supermercado

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español Sin Fronteras (Nivel – Elemental)
Course Objective:
To enable the students to comfortably interact using basic Japanese.

Note: Teaching is done in roman as well as Japanese script, students will be taught katakana (another form of script) in this semester i.e. to be able to write all the foreign words in Japanese.

Course Contents:

Module I
Comparison using adjectives, making requests

Module II
Seeking permission

Module III
Practice of conversations on:
Visiting people, Party, Meetings, after work, at a ticket vending machine etc

Module IV
Essays, writing formal letters

Learning Outcome
➢ Students can speak the language describing above-mentioned topics.

Methods of Private study /Self help
➢ Handouts, audio-aids, and self-do assignments, role-plays.
➢ Students are also encouraged to attend Japanese film festival and other such fairs and workshops organized in the capital from time to time.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

Text:
• Teach yourself Japanese

References:
• Shin Nihongo no kiso 1
Course Objective:
How many characters are there? The early Qing dynasty dictionary included nearly 50,000 characters, the vast majority of which were rare accumulated characters over the centuries. An educate person in China can probably recognize around 6000 characters. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Dialogue Practice
Observe picture and answer the question
Pronunciation and intonation
Character writing and stroke order.
Electronic items

Module II
Traveling – The Scenery is very beautiful
Weather and climate
Grammar question with – “bu shi …. Ma?”
The construction “yao … le” (Used to indicate that an action is going to take place)
Time words “yiqian”, “yiwai” (Before and after).
The adverb “geng”.

Module III
Going to a friend house for a visit meeting his family and talking about their customs.
Fallen sick and going to the Doctor, the doctor examines, takes temperature and writes prescription.
Aspect particle “guo” shows that an action has happened some time in the past.
Progressive aspect of an actin “zhengzai” Also the use if “zhe” with it.
To welcome someone and to see off someone …. I cant go the airport to see you off… etc.

Module IV
Shipment. Is this the place to checking luggage?
Basic dialogue on – Where do u work?
Basic dialogue on – This is my address
Basic dialogue on – I understand Chinese
Basic dialogue on – What job do u do?
Basic dialogue on – What time is it now?

Module V
Basic dialogue on – What day (date) is it today?
Basic dialogue on – What is the weather like here.
Basic dialogue on – Do u like Chinese food?
Basic dialogue on – I am planning to go to China.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- “Elementary Chinese Reader, Part-2” Lesson 31-38
MOLECULAR BIOLOGY

Course Code: BTB 501 Credit Units: 03

Course Objective:
The aim is to extend understanding of the molecular mechanisms via which genetic information is stored, expressed and transmitted among generations.

Course Contents:

Module I: DNA Replication and repair
Mechanism of Prokaryotic and Eukaryotic DNA replication, Enzymes and accessory proteins involved in DNA replication, DNA repair Mechanism.

Module II: Transcription
Prokaryotic transcription, Eukaryotic transcription, RNA polymerase, General and specific transcription factors, Regulatory elements.

Module III: Modifications in RNA
5'-cap formation, transcription termination, 3 '-end processing and polyadenylation, Splicing, Editing, Nuclear export of mRNA and mRNA stability.

Module IV: Translation
Prokaryotic and Eukaryotic translation, the translation Machinery; Mechanisms of initiation, elongation and termination, regulation of translation, co-and post-translational modifications of proteins.

Module V: Regulation of Gene Expression in prokaryotic and eukaryotic systems
Lac operon, Ara operon, regulation in Eukaryotes

Module VI: Antisense and Ribozyme technology
Molecular mechanism of antisense molecules, inhibition of splicing, polyadenylation and translation, disruption of RNA structure and capping, Biochemistry of Ribozyme; Hammerhead, hairpin and other ribozymes, strategies for designing ribozymes, applications of antisense and ribozyme technologies.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Concepts of Genetics, W.S. Klug, and M.R. Cummings 2004, Pearson Education
- Genome, T.A. Brown, John Wiley & Sons Inc.
- Gene VIII, Benjamin Lewin 2005, Oxford University Press

References:
DATABASE MANAGEMENT SYSTEMS

Course Code: BTB 502 Credit Units: 03

Course Objective:
It enables the students to access biological information networks and databases in order to understand the different techniques of biotechnology to build detection systems especially in the prevention and treatment of human diseases.

Course Contents:

Module I: Overview and historical perspective
File systems vs. DBMS, advantages of DBMS;

Module II: Describing and storing data in DBMS
Levels of abstraction and data independence; Data models and their comparison; Entity relationship model - concepts, design, keys and features; Relational model - introduction, structure of the relational databases, integrity constraints, Relational algebra and calculus - selection and projection, set operations, renaming, Joins, Division etc.

Module III: SQL and Perl

Module IV: Database design
Functional dependencies, Normal forms; Concurrency control and database discovery - concept of transaction: atomicity, consistency, isolation and durability, transactions and schedules, concurrent execution of transactions, Lock based concurrency control, Database recovery

Module V: Current trends
Distributed databases and multimedia databases;

Module VI: Data warehousing and Data Mining

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/ Seminar/ Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Data Mining: Concept and techniques, J. Han and M. Kamber, Morgan Kaufman.
- Data Mining, A.K. Pujari, Sangam Books Ltd.
- Database Management, P.C. Desai.
- Introduction to Database Systems, C.J. Date, Addison Wesley Publishing.

References:
- Principles of Database and Knowledge Based systems, J.D. Ullman, Computer Science Press.
- The Data Warehouse Lifecycle Toolkit, John Wiley and Sons Inc.
- The Data Warehouse Toolkit, R. Kimball et al, John Wiley and Sons Inc.
Course Objective:
The knowledge gained through chemical reaction engineering and material and energy balances will help the students to understand the tools and techniques of biotechnology.

Course Contents:

Module I: Material and Energy Balances
Units and dimensions, Dimensional analysis; Simple problems on material balance calculations involving unit processes and reactive systems; Available electron balances.
Basic energy concepts -enthalpy changes in chemical/biochemical reactions and in non-reactive processes, Energy balance calculations, Use of Steam tables; Heat of reaction and energy balance for microbial processes.

Module II: Chemical reaction engineering
Kinetics of homogenous reactions: Concepts of reaction rate, order of reaction and molecularity, Analysis of batch reactors for kinetic interpretation of data and isothermal reactor design for single and multiple reactions, Design equations for CSTR and plug flow reactors.

Module III: Instrumentation and process control
Principles of measurement: error, accuracy and sensitivity; Measurement of flow, pressure, temperature, level, pH, viscosity and chemical composition.
Basic concepts of feedback control, control loop and its elements, Dynamic behaviour of first, second and higher order physical systems, controller hardware, choice of controllers and settings. Introduction to advanced control systems: feed forward, cascade and ratio control.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Basic Principles and Calculations in Chemical Engineering, D.M. Himmelblau, Prentice Hall
- Basic Principles of Chemical Engineering, E.I. Shaheen, Houghton Mifflin

References:
- Chemical Reaction Engineering, O. Levenspiel, John Wiley and Sons Inc.
- Process Modelling, Simulation and Control for Chemical Engineers, W.L. Luyben, McGraw Hill
Course Objective:
The application of Plant Biotechnology covers major areas related to commercial applications. Regeneration of plants through in vitro techniques offers a practical strategy for micro propagation. Importance will also be given to areas like in vitro fertilization, animal cell and tissue culture, hormone vaccine and important enzyme production through animal biotechnology.

Course Contents:

Module I
Historical perspective of plant tissue culture.
Tissue culture lab and organization
Sterilisation techniques
Types of nutrient media and media composition
Plant regeneration pathways
Role of phytohormones
Cell culture techniques- cell, tissue, organ cultures, callus culture, suspension culture
Culture techniques Callus culture, cell culture and protoplast cultures.

Module II
Organogenesis and somatic embryogenesis.
Applications of plant tissue and cell culture.
Micropopogation, pathogen free plants. production haploids,
Somaclonal variation.preservation of germplasm.

Module III
Genetic engineering in plants, - transformation vectors
Gene transfer techniques-vector meditated and vector less gene transfer.
Transgenic plants trans gene integration and expression

Module III
Transgenic crop with new traits-herbicide tolerance, insect and disease resistance,
Therapeutic proteins and compounds
Oral vaccines
Production of secondary metabolites via tissue culture
Bioethics of plant genetic engineering.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:
- An Introduction to Plant Tissue Culture, M.K. Razdan, Oxford and IBH Publishing
- Plant Biotechnology and Transgenic Plants, K.M.O. Caldenty, W.H. Barz and H.L. Wills, Marcel Dekker
- Plant Biotechnology, J. Hammond, P.McGarvy and V. Yusibov, Springer Verlag
- Plant Cell & Tissue Culture for the Production of Food Ingredients, T-J Fu, G. Singh and W.R. Curtis, Kluwer Adacemic/Plenum Press
- Plant Tissue Culture: Theory & Practice, S.S. Bhojwani and M.K. Razdan, Elsevier Health Sciences
ANIMAL BIOTECHNOLOGY

Course Code: BTB 505 Credit Units: 03

Course Objective:

Course Contents:

Module I
Historical perspectives, sterilization methods, organ culture - culture techniques, plasma clot, raft methods, agar gel, grid method, organ engineering.

Module II
Cell culture substrates, cultural media, natural and artificial media, initiation and maintenance of cell cultures, cell culture products, cryopreservation techniques, immobilized cultures

Module III
In vitro fertilization and embryo transfer

Module IV
Somatic cell hybridization, hybridoma technology

Module V
Animal genetic engineering - vectors, gene transfer methods - microinjection, virus mediated and other methods of gene transfer

Module VI
Transgenic animals with new traits, transgenic animals as bioreactors for producing pharmaceutically important compounds and therapeutic etc.

Module VII
Bioethical issues related to animal biotechnology,

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/ Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References

- Cell Culture LabFAX, M. Butler and M. Dawson, Bios scientific Publications Ltd.
- Cell Growth and Division – A Practical approach, R. Basega, IRL Press
- Culture of Animal Cells, R.I Freshney, Wiley-Leiss
- Comprehensive Biotechnology, Moo-Young, Alan T. Bullm Howard Dalton, Panima Publication
Course Code: BTB 520 Credit Units: 02

Course Contents:

Module I
Preparation of DNA: genomic, Plasmid

Module II
Isolation of RNA

Module III
RFLP analysis

Module IV
Gel filtration

Module V
Preparation of Competent Cells

Module VI
Restriction Digestion and Ligation of DNA

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>Major</td>
</tr>
<tr>
<td>(Practical</td>
<td>Experiment</td>
</tr>
<tr>
<td>Based)</td>
<td>Experiment</td>
</tr>
<tr>
<td>Viva</td>
<td>Minor</td>
</tr>
<tr>
<td>Attendance</td>
<td>Experiment/Spotting</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
PLANT BIOTECHNOLOGY LAB

Course Code: BTB 521 Credit Units: 02

Course Contents:

Module I
Sterilization of glasswares and equipments.
Preparation of cotton plugs and culture media
Preparation of stocks for culture media
Preparation of culture media

Module II
Preparation and sterilization of different explants
Inoculation of explants on culture media

Module III
Study of viability of seeds
Embryo culture

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
ANIMAL BIOTECHNOLOGY LAB

Course Code: BTB 522 Credit Units: 01

Course Contents:

1. Preparation, standardization and sterilization of culture media
2. Inoculation of specific tissues for callusing
3. Inoculation and maintenance of cell lines
4. Study of toxicity on cell lines

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>Attendance</td>
<td>Major Experiment</td>
</tr>
<tr>
<td></td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Viva</td>
</tr>
</tbody>
</table>
DATABASE MANAGEMENT LAB

Course Code: BTB 523 Credit Units: 01

Course Contents:

Module I
Database creation using DDL and DML.

Module II
Defining the primary and secondary keys.

Module III
Implementation of selection, projection and joins (internal and external) with SQL and Perl.

Module IV
Normalization of databases with SQL and Perl

Module V
Implementation of transactions and schedules.

Module VI
Detection of association rules and knowledge recovery.

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Attendance</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
COMMUNICATION SKILLS - III

Course Code: BTB 541 Credit Units: 01

Course Objective:
To equip the participant with linguistic skills required in the field of science and technology while guiding them to excel in their academic field.

Course Contents:

Module I
Reading Comprehension
Summarising
Paraphrasing

Module II
Essay Writing
Dialogue Report

Module III
Writing Emails
Brochure
Leaflets

Module IV: Introduction to Phonetics
Vowels
Consonants
Accent and Rhythm
Accent Neutralization
Spoken English and Listening Practice

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>CAF</th>
<th>V</th>
<th>GD</th>
<th>GP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF – Communication Assessment File
GD – Group Discussion
GP – Group Presentation

Text & References:

- Effective English for Engineering Students, B Cauveri, Macmillan India
- Creative English for Communication, Krishnaswamy N, Macmillan
- A Textbook of English Phonetics, Balasubramanian T, Macmillan
BEHAVIOURAL SCIENCE - V
(GROUP DYNAMICS AND TEAM BUILDING)

Course Code: BTB 543 Credit Units: 01

Course Objective:
To inculcate in the students an elementary level of understanding of group/team functions.
To develop team spirit and to know the importance of working in teams.

Course Contents:

Module I: Group formation
Definition and Characteristics
Importance of groups
Classification of groups
Stages of group formation
Benefits of group formation

Module II: Group Functions
External Conditions affecting group functioning: Authority, Structure, Org. Resources, Organizational policies etc.
Internal conditions affecting group functioning: Roles, Norms, Conformity, Status, Cohesiveness, Size, Intergroup conflict.
Group Cohesiveness and Group Conflict
Adjustment in Groups

Module III: Teams
Meaning and nature of teams
External and internal factors effecting team
Building Effective Teams
Consensus Building
Collaboration

Module IV: Leadership
Meaning, Nature and Functions
Self leadership
Leadership styles in organization
Leadership in Teams

Module V: Power to empower: Individual and Teams
Meaning and Nature
Types of power
Relevance in organization and Society

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Text & References:

- Organizational Behaviour, Davis, K.
- Bates, A. P. and Julian, J.: Sociology - Understanding Social Behaviour
- Dressers, David and Cans, Donald: The Study of Human Interaction
- Lindsey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison – Welsley, US.
- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
• J William Pfeiffer (ed.) Theories and Models in Applied Behavioural Science, Vol 2, Group (1996); Pfeiffer & Company
FRENCH - V

Course Code: BTB 544 Credit Units: 02

Course Objective:
To furnish some basic knowledge of French culture and civilization for understanding an authentic document and information relating to political and administrative life.

Course Contents:

Module D: pp. 131 – 156 Unités 10, 11

Contenu lexical:

Unité 10: Prendre des décisions
1. Faire des comparaisons
2. décrire un lieu, le temps, les gens, l'ambiance
3. rédiger une carte postale

Unité 11: faire face aux problèmes
1. Exposer un problème.
2. parler de la santé, de la maladie
3. interdire/demander/donner une autorisation
4. connaître la vie politique française

Contenu grammatical:

1. comparatif - comparer des qualités/ quantités/actions
2. supposition : Si + présent, futur
3. adverbe - caractériser une action
4. pronom "Y"

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1
GERMAN - V

Course Code: BTB 545 Credit Units: 02

Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany
Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Genitive case
Genitive case – Explain the concept of possession in genitive
Mentioning the structure of weak nouns

Module II: Genitive prepositions
Discuss the genitive propositions and their usage: (während, wegen, statt, trotz)

Module III: Reflexive verbs
Verbs with accusative case
Verbs with dative case
Difference in usage in the two cases

Module IV: Verbs with fixed prepositions
Verbs with accusative case
Verbs with dative case
Difference in the usage of the two cases

Module V: Texts
A poem ‘Maxi’
A text Rocko

Module VI: Picture Description
Firstly recognize the persons or things in the picture and identify the situation depicted in the picture;
Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
Course Objective:
To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations with ease.

Course Contents:

Module I
Revision of earlier semester modules

Module II
Future Tense

Module III
Presentations in English on Spanish speaking countries’
Culture
Sports
Food
People
Politics
Society
Geography

Module IV
Situations:
En el hospital
En la comisaria
En la estacion de autobus/tren
En el banco/cambio

Module V
General revision of Spanish language learnt so far.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- Español Sin Fronteras, Greenfield
JAPANESE - V

Course Code: BTB 547 Credit Units: 02

Course Objective:
To enable the students to converse, read and write language comfortably and be able to converse using different patterns and forms taught throughout. Students are taught and trained enough to get placed themselves in Japanese companies.
Note: Teaching is done in roman as well as Japanese script.

Course Contents:

Module I
Dictionary form of the verbs, Joining of verbs
Negative form of verbs
Potential form

Module II
Joining of many actions together
Usage of dictionary form of the verbs in sentences
Introducing colloquial language.

Module III
Direct form of the speech, quotations,
Expressing thoughts
Actions and reasoning

Module IV
Conclusion
Receiving and giving things, favour etc.
Different forms like ‘tara’ form.

Module V
Revision of the whole syllabus

Learning Outcome
➢ Students can speak and use different patterns, ways to describe a particular situation and can converse comfortably in mentioned situations throughout.
➢ Students can appear in the interviews for placements in Japanese companies.

Methods of Private study /Self help
➢ Teaching will be supported by handouts, audio-aids, and self-do assignments and role plays.
➢ Use of library, visiting and watching movies in Japan and culture center every Friday at 6pm.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

Text:
• Teach yourself Japanese

References:
• Shin Nihongo no kiso 1
Course Code: BTB 548 Credit Units: 02

Course Objective:
What English words come from Chinese? Some of the more common English words with Chinese roots are ginseng, silk, dim sum, fengshui, typhoon, yin and yang, T’al chi, kung-fu. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Drills
Dialogue practice
Observe picture and answer the question.
Pronunciation and intonation.
Character writing and stroke order

Module II
Intonation
Chinese foods and tastes – tofu, chowmian, noodle, Beijing duck, rice, sweet, sour….etc. Learning to say phrases like – Chinese food, Western food, delicious, hot and spicy, sour, salty, tasteless, tender, nutritious, god for health, fish, shrimps, vegetables, cholesterol is not high, pizza, milk, vitamins, to be able to cook, to be used to, cook well, once a week, once a month, once a year, twice a week……
Repetition of the grammar and verbs taught in the previous module and making dialogues using it.
Compliment of degree “de”.

Module III
Grammar the complex sentence “suiran … danshi…..”
Comparison – It is colder today than it was yesterday…..etc.
The Expression “chule….yiwai”. (Besides)
Names of different animals.
Talking about Great Wall of China
Short stories

Module IV
Use of “huozhe” and “haishi”
Is he/she married?
Going for a film with a friend.
Having a meal at the restaurant and ordering a meal.

Module V
Shopping – Talking about a thing you have bought, how much money you spent on it? How many kinds were there?
What did you think of others?
Talking about a day in your life using compliment of degree “de”. When you get up? When do you go for class? Do you sleep early or late? How is Chinese? Do you enjoy your life in the hostel?
Making up a dialogue by asking question on the year, month, day and the days of the week and answer them.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

• “Elementary Chinese Reader ” Part-II Lesson 39-46
SUMMER PROJECT - I

Course Code: BTB 560 Credit Units: 06

Methodology
The students will go to various research institutes/R&D Labs of industries to learn various biotechnological tools and procedures and their utility in commercial applications. The aim of this training is to train the students in the various industrial/Research aspects of commercialization of biotechnological systems.
The students will be supervised by the internal faculty during the tenure of training.
The students shall submit a dissertation on the training undertaken which shall be evaluated by the concerned internal faculty. The Viva Voce shall then be conducted by an external Examiner

Examination Scheme:

Dissertation: 50
Viva Voce: 50

Total: 100
Course Code: BTB 601 Credit Units: 03

Course Objective:
A complete understanding of molecular techniques can be obtained through the course. The successful application of biotechnology largely depends on these advanced molecular techniques.

Course Contents:

Module I: Enzymes used in RDT
Restriction endonuclease, methyltransferase, ligase, polymerase, kinase, phosphatase, nuclease, transferase, reverse transcriptase.

Module II: Cloning vectors
Plasmids, bacteriophages (Lambda and M13), phagemids, cosmids, artificial chromosomes (YAC, BAC). expression vectors (Bacteria and yeast), vector engineering (fusion tags, antibiotic markers), codon optimization, host engineering

Module III: Blotting techniques and hybridization
Southern, Northern and Western blotting techniques. Radioactive and non-radioactive probes.

Module IV: Nucleic acid amplification and its applications
Principles of PCR, designing of primers

Module V: Cloning Techniques
Basic cloning experiment: Design of cloning strategy and stepwise experimental procedure, Complementation, colony and plaque hybridization, restriction, PCR, plus-minus screening, immunoscreening.

Module VI: DNA Libraries
Purpose of constructing DNA libraries. Construction of cDNA and genomic libraries.

Module VII: Sequencing of DNA
DNA sequencing (Maxam Gilbert, Sanger’s and automated), protein engineering.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:

References:
- Laboratory Press.
ENZYMIOLOGY AND ENZYME TECHNOLOGY

Course Code: BTB 602 Credit Units: 03

Course Objective:
The course aims to provide an understanding of the principles and application of proteins, secondary metabolites and enzyme biochemistry in therapeutic applications and clinical diagnosis. The theoretical understanding of biochemical systems would certainly help to interpret the results of laboratory experiments.

Course Contents:

Module I: Enzymes
Introduction and scope, Nomenclature, Mechanism of Catalysis.

Module II: Enzyme Kinetics
Single substrate steady state kinetics; Michaelis Menten equation, Linear plots, King-Altman’s method; Inhibitors and activators; Multisubstrate systems; ping-pong mechanism, Alberty equation, Sigmoidal kinetics and Allosteric enzymes

Module III
Immobilization of Enzymes; Advantages, Carriers, adsorption, covalent coupling, cross-linking and entrapment methods, Micro-environmental effects.

Module IV: Enzyme reactors
Reactors for batch/continuous enzymatic processing, choice of reactor type; idealized enzyme reactor systems, Mass transfer in enzyme reactors: Steady state analysis of mass transfer and biochemical reaction in enzyme reaction.

Module V: Bioprocess Design
Physical parameters, reactor operational stability, Immobilized cells.

Module VI: Challenges and future trends
Enzyme catalysis in organic media; catalytic antibodies and non protein biomolecules as catalysts, biocatalysts from extreme thermophilic and hyper thermophilic Archae and Bacteria.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Enzymes: A Practical Introduction to Structure, Mechanism and Data Analysis, R.A. Copeland, John Wiley and Sons Inc.

References:
- Enzymes Biochemistry, Biotechnology, Clinical Chemistry, Trevor Palner.
- Industrial Enzymes & their applications, H. Uhlig, John Wiley and Sons Inc.
Course Objective:
The course aims to provide an understanding of the principles and applications of proteins, enzymes and nucleic acids for their role in biochemical pathway as well as interactions among themselves.

Course Contents:

Module I: Chemistry of amino acids and peptides
Side chain structure and function in protein folding and functionality: Secondary structure of proteins -helices, sheets, loops and turns; Structural and functional proteins. Tertiary structure of proteins, homo and hetero-dimers, trimers and tetramers; forces governing protein-protein interactions; open tertiary structure; Classification of proteins; Structure and function of an antibody; structure of hemoglobin, muscle proteins; Sequence and structural motifs in proteins.

Module II: Protein-ligand interactions
Lock and key versus handshake mechanism of substrate recognition; structural basis of recognition; reaction mechanisms of enzymes, G-Protein coupled receptors.

Module III: Protein solubility, protein stability and stabilization
Salting in and salting out, Parameters affecting; enthalpic and entropic stabilization, mutations increasing stability, helix capping; Native, partially denatured and denatured proteins; Protein denaturation, Physical and chemical denaturants; Refolding

Module IV: DNA structure
Covalent structure of DNA, base pairing, hydrogen bonding, DNA melting and annealing, difference between AT and GC pairing, DNA models, The Watson Crick model; Crystal structure of B-DNA, major and minor groves, dyad symmetry, base pair stacking, propellor twist, A and Z- DNA, triple stranded DNA, telomeric sequences and structure, G-quartets, palindromic and tandem sequences, Base pair flipping and DNA bulges, DNA methylation; Protein-DNA interactions; drug-DNA interactions; Databases of sequences and structure for protein and DNA, public domain softwares for visualizing and modeling biomolecules -Rasmol, Deepview, Whatif.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Biochemistry, R.H. Abeles, P.A. Frey and W.A. Jencks, Jones and Bartlett.
- Essentials of Molecular Biology, D. Freifelder, Jones and Bartlett Publications.
- Genes VII, B. Lewin, Oxford University Press.

References:
- Introduction to Protein Structure, C. Branden and J Tooze, Garland Publishing Company.
- Protein Structure, M. Perutz, Oxford University Press.
- Database Annotation in Molecular Biology, Arthur M. Lesk.
- From Genes to Clones, E.L. Winnacker.
- Genes & Genomes, M.S. Paul Berg.
- Structure and Machanism in Protein Science, Alan Fersht.
IMMUNOLOGY AND IMMUNOTECHNOLOGY

Course Code: BTB 604 Credit Units: 03

Course Objective:
Role of antibody engineering in biomedical applications and the importance of immuno genetics in disease processes, tissue transplantation and immune regulation are some of the areas of attributes of this course which can help the students to understand the biotechnology related to human kind.

Course Contents:

Module I: Introduction

Module II: Major Histocompatibility
MHC, BCR and TCR, generation of antibody diversity, Complement system

Module III: Cells of the immune system
Hematopoiesis and differentiation, lymphocyte trafficking, B-Lymphocytes, T -Lymphocytes, macrophages, dendritic cells, natural killer, lymphokines and lymphokine activated killer cells, eosinophils, neutrophils and mast cells

Module IV: Regulation of immune response
Antigen processing and presentation, activation of B and T lymphocytes, cytokines and their role in immune regulation, T cell regulation and MHC restriction, immunological tolerance

Module V: Cell mediated toxicity
Mechanism of T cell and NK cell mediated lysis and macrophage mediated cytotoxicity.

Module VI: Hypersensitivity

Module VII: Autoimmunity

Module VIII: Tumor immunology, Immunity to infectious agents

Module IX: Transplantation Immunology

Module X: Synthetic vaccines
Vaccines: General consideration, ideotype network hypothesis, Synthetic vaccines

Module XI: Immunological Techniques
Immuo diffusion, immuno-electrophoresis, ELISA, RIA, fluorescence activated cell sorter

Module XII: Hybridoma technology and its applications
Fusion of myeloma cells with lymphocytes

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Basic Immunology, A.K. Abbas and A.H. Lichtman, Saunders W.B. Company
- Basic Immunology, A.K. Abbas and A.H. Lichtman, Saunders W.B. Company

References:
- Fundamentals of Immunology, W. Paul, Lippincott Williams and Wilkins
- Immunology, W.L. Anderson, Fence Creek Publishing (Blackwell).
- Immunology: A Short Course, E. Benjamin, R. Coico and G. Sunshine, Wiley-Leiss Inc.
- Immunology, Roitt, Mosby – Yearbook Inc.
- Kuby Immunology, R.A. Goldsby, T.J. Kindt, and B.A. Osborne, Free
COMPUTATIONAL BIOLOGY

Course Code: BTB 605
Credit Units: 03

Course Objective:
The objective is to describe relational data models and database management systems with an emphasis on biologically important techniques to store various data on DNA sequencing structures genetic mapping etc.

Course Contents:

Module I: Introduction and overview
The NCBI data model, sequence databases, sequence retrieval, sequence file formats, submitting DNA and protein sequences.
Types of biological databases, Databases and rapid sequence analysis

Module II: Sequence alignment
Global and local alignments, statistical significance of alignments, scoring matrices and gap penalties, filtering, position specific scoring matrices, internet resources, Pairwise and multiple alignment, uses of pairwise and multiple sequence alignment, programs and methods for sequence alignment, pattern searching programs, family and superfamily representation, structural inference, dynamic programming algorithms, alignment by hidden Markov models, consensus word analysis, more complex scoring.

Module III: Phylogenetic prediction
Trees-splits and metrics on trees, tree interpretation, Distance – additive, ultrameric and nonadditive distances, tree building methods, phylogenetic analysis, parsimony, tree evaluation, maximum likelihood trees – continuous time markov chains, estimating the rate of change, likelihood and trees; analysis software.

Module IV: Predictive methods using DNA and protein sequences
ESTs – databases, clustering, gene discovery and identification, and functional classification.
Protein identification, physical properties, motifs and patterns, structure, folding classes, structure classification;

Module V
Molecular modeling – PDB and MMDB, structure file formats, visualizing structural information, advance structure modeling, Internal and external co-ordinate system, cartesian and cylindrical polar co-ordinate system, Potential energy calculations using semiempirical potential energy function, Molecular mechanics and dynamics, Docking of Molecules, Knowledge base structure prediction, Molecular Design, structure similarity searching; Secondary structure prediction in proteins, prediction of buried residues in proteins;

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Essentials of Genomics and Bioinformatics, C.W. Sensen, John Wiley and Sons
- Bioinformatics: Sequence and Genome Analysis, D.W. Mount, Cold Spring Harbor Laboratory Press

References:
Course Objective:
The course material on the kinetics of microbial growth, substrate utilization and product formation etc. may help
the students to understand the various principles involved in instrumentation and control of bioprocess.

Course Contents:

Module I
Kinetics of microbial growth, substrate utilization and product formation.

Module II
Sterilization of air and medium.

Module III
Batch, continuous, cell recycle and fed batch reactors; mass and energy balance in microbial processes, Bioreactor
design, Different types of bioreactors, their parts and functions. Different types of valves.

Module IV
Mass transfer in Biological reactions; Scale-up principles; Instrumentation and control of bioprocesses.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Biochemical Engineering- Kinetics, Mass Transport, Reactors and Gene Expression, W F Weith, John Wiley
 and Sons Inc
- Biochemical Engineering, S Aiba, A E Humphery and N F Millis, University of Tokyo Press
- Biochemical Engineering Fundamentals, J E Baily and D F Oillis, McGraw Hill
- Bioprocess Engineering Principles, P Doran, Academic Press

References:
- Chemical Engineering, J M Coulson, and J F Richardson, Butterwirth Heinemann
- Fermentation and Biochemical Engineering Handbook: Principles, Process Design, and Equipment, HC Vogel,
 CL Todaro, CC Todaro, Noyes Data Corporation/Noyes Publications
- Process Engineering in Biotechnology, A T Jackson, Prentice Hall
RECOMBINANT DNA TECHNOLOGY LAB

Course Code: BTB 620 Credit Units: 02

Course Objective:
The laboratory experiments in Recombinant DNA Technology would certainly help to comprehend the theoretical aspects of the subject.

Course Contents:

Module I
Study of cloning (GFP CLONING)

Module II
Study of PCR

Module III
Study of Southern hybridisation

Module IV
Study of RAPD

Module V
Site directed mutagenesis

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>(Practical</td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td>Based)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Mid Term</td>
<td>Practical Record</td>
</tr>
<tr>
<td>Viva</td>
<td>10</td>
</tr>
<tr>
<td>Attendance</td>
<td>Viva</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
</tbody>
</table>

ENZYMEOLOGY AND ENZYME TECHNOLOGY LAB

Course Code: BTB 621 Credit Units: 01

Course Objective:
The laboratory will help the students to isolate enzymes from different sources, enzyme assays and studying their kinetic parameters which have immense importance in industrial processes.

Course Contents:

Module I
Isolation of enzymes from plant and microbial sources.

Module II
Enzyme assay; activity and specific activity – determination of amylase, nitrate reductase, cellulase, protease.

Module III
Purification of Enzyme by ammonium sulphate fractionation.

Module IV
Enzyme Kinetics: Effect of varying substrate concentration on enzyme activity, determination of Michaelis-Menten constant (K_m) and Maximum Velocity (V_{max}) using Lineweaver-Burk plot.

Module V
Effect of Temperature and pH on enzyme activity.

Module VI
Enzyme immobilization

Examination Scheme:

<table>
<thead>
<tr>
<th></th>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>Mid Term Viva</td>
<td>Attendance</td>
</tr>
<tr>
<td>(Practical Based)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Major Experiment</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Minor Experiment/Spotting</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Practical Record</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Viva</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Practical Biochemistry, Sawhney and Singh

References:
- Practical Biochemistry, Principles & Techniques, Keith Wilson and John Walker
Course Code: BTB 622 Credit Units: 01

Course Contents:

1. Study of physical properties of proteins.
2. Analysis of protein structure.
3. Study of protein finger printing
4. Study of protein fractionation
5. Study of protein folding

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
IMMUNOLOGY AND IMMUNOTECHNOLOGY LAB

Course Code: BTB 623 Credit Units: 01

Course Contents:

Module I
Blood film preparation and identification of cells.

Module II
Identification of blood group.

Module III
Isolation of serum.

Module IV
Lymphoid organs and their microscopic organization.

Module V
WIDAL Test

Module VI
Radial Immuno Diffusion Test

Module VII
Ouchterlony Double diffusion Test

Module VIII: Elisa
DOT, SANDWICH

Module IX
Purification of IgG through affinity chromatography

Module X
Immunohistochemistry

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>Mid Term</td>
</tr>
<tr>
<td>(Practical</td>
<td>Viva</td>
</tr>
<tr>
<td>Based)</td>
<td>Attendance</td>
</tr>
<tr>
<td></td>
<td>Major Experiment</td>
</tr>
<tr>
<td></td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td></td>
<td>Practical Record</td>
</tr>
<tr>
<td></td>
<td>Viva</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Course Code: BTB 624 Credit Units: 01

Course Contents:

List of Experiments/Exercises

1. Basics of sequence analysis Retrieving a sequence-nucleic acid/Protein
2. Local and Global Alignment- concepts Pair wise sequence alignment
3. Multiple sequence alignment
4. Dynamic Programming – Smith Watermann Algorithm Needleman Wunsch Algorithm
5. Motif and pattern searching
6. Phylogentic prediction and analysis
7. Structure prediction
8. Finding transcription regulatory signals
9. Docking

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>Mid Term Viva</td>
<td>Minor Experiment/Spotting</td>
</tr>
<tr>
<td>Attendance</td>
<td>Practical Record</td>
</tr>
<tr>
<td>Viva</td>
<td>Viva</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
COMMUNICATION SKILLS - IV

Course Code: BTB 641 Credit Units: 01

Course Objective:
To enhance the skills needed to work in an English-speaking global business environment.

Course Contents:

Module I: Business/Technical Language Development
Advanced Grammar: Syntax, Tenses, Voices
Advanced Vocabulary skills: Jargons, Terminology, Colloquialism
Individualised pronunciation practice

Module II: Social Communication
Building relationships through Communication
Communication, Culture and Context
Entertainment and Communication
Informal business/ Technical Communication

Module III: Business Communication
Reading Business/ Technical press
Listening to Business/ Technical reports (TV, radio)
Researching for Business /Technology

Module IV: Presentations
Planning and getting started
Design and layout of presentation
Information Packaging
Making the Presentation

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>CAF</th>
<th>V</th>
<th>GD</th>
<th>GP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF – Communication Assessment File
GD – Group Discussion
GP – Group Presentation

Text & References:

- Business Vocabulary in Use: Advanced Mascul, Cambridge
- Business Communication, Raman –Prakash, Oxford
- Business Communications, Rodgers, Cambridge
- Working in English, Jones, Cambridge
- New International Business English, Jones/Alexander, Cambridge
Course Objective:
To develop an understanding of the concept of stress, its causes, symptoms, and consequences.
To develop an understanding of the consequences of stress on one’s wellness, health, and work performance.

Course Contents:

Module I: Stress
Meaning & Nature
Characteristics
Types of stress

Module II: Stages and Models of Stress
Stages of stress
The physiology of stress
Stimulus-oriented approach.
Response-oriented approach.
The transactional and interactive model.
Pressure – environment fit model of stress.

Module III: Causes and symptoms of stress
Personal
Organizational
Environmental

Module IV: Consequences of stress
Effect on behaviour and personality
Effect of stress on performance
Individual and Organizational consequences with special focus on health

Module V: Strategies for stress management
Importance of stress management
Healthy and Unhealthy strategies
Peer group and social support
Happiness and well-being

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Text & References:

- Blonna, Richard; Coping with Stress in a Changing World: Second edition
- Pestonjee, D.M, Pareek, Udai, Agarwal Rita; Studies in Stress And its Management
- Pestonjee, D.M.; Stress and Coping: The Indian Experience
- Clegg, Brian; Instant Stress Management – Bring calm to your life now
Course Code: BTB 644
Credit Units: 02

Course Objective:
To strengthen the language of the students both in oral and written so that they can:
i) express their sentiments, emotions and opinions, reacting to information, situations;
ii) narrate incidents, events;
iii) perform certain simple communicative tasks.

Course Contents:
Module D: pp. 157 – 168 – Unité 12

Unité 12: s'évader
1. présenter, caractériser, définir
2. parler de livres, de lectures
3. préparer et organiser un voyage
4. exprimer des sentiments et des opinions
5. téléphoner
6. faire une réservation

Contenu grammatical:
1. proposition relative avec pronom relatif "qui", "que", "où" - pour caractériser
2. faire + verbe

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- le livre à suivre : Campus: Tome 1
GERMAN - VI

Course Code: BTB 645 Credit Units: 02

Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany
Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Adjective endings
Adjective endings in all the four cases discussed so far
Definite and indefinite articles
Cases without article

Module II: Comparative adverbs
Comparative adverbs as and like

Module III: Compound words
To learn the structure of compound words and the correct article which they take
Exploring the possibility of compound words in German

Module IV: Infinitive sentence
Special usage of ‘to’ sentences called zu+ infinitive sentences

Module V: Texts
A Dialogue: ‘Ein schwieriger Gast’
A text: ‘Abgeschlossene Vergangenheit’

Module VI: Comprehension texts
Reading and comprehending various texts to consolidate the usage of the constructions learnt so far in this semester.

Module VII: Picture Description
Firstly recognize the persons or things in the picture and identify the situation depicted in the picture;
Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dalapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
Course Objective:
To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations in Present as well as in Present Perfect Tense with ease.

Course Contents:

Module I
Revision of the earlier modules

Module II
Present Perfect Tense

Module III
Commands of irregular verbs

Module IV
Expressions with Tener que and Hay que

Module V
En la embajada
Emergency situations like fire, illness, accident, theft

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español, En Directo I A
- Español Sin Fronteras
Course Objective:
To enable the students to converse in the language with the help of verbs and the usage of different sentence patterns, which help them to strengthen the language.
Students are taught and trained enough to get placed in Japanese companies.
Note: The teaching is done in roman as well as Japanese script. 10 more kanjis are introduced in this semester.

Course Contents:

Module I: Polite form of verbs
Expressing feelings with the polite forms of verb.

Module II: Potential form
Ability of doing or not doing something

Module III: Conjunctions
Joining two sentences with the help of shi and mo

Module IV: Intransitive Verbs
Sentence patterns of indirect speech

Module V: Feelings and expressions
Regret, existence etc.

Learning Outcome
➢ Students can speak the language with the use of different forms of verb.

Methods of Private study/ Self help
➢ Hand-outs, audio -aids, assignments and role-plays will support classroom teaching.
➢ Students are encouraged to watch Japanese movies at Japan Cultural and information center.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Shin Nihon-go no Kiso Lesson No. 26 to 30.
- All vocabulary and topics taught are from the above-mentioned book.
Course Objective:
Chinese emperor Qin Shi Huang – Ti who built the great wall of China also built a network of 270 palaces, linked by tunnels, and was so afraid of assassination that he slept in a different palace each night. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
- Drills
- Dialogue practice
- Observe picture and answer the question.
- Pronunciation and intonation.
- Character writing and stroke order.

Module II
- Going out to see a science exhibition
- Going to the theatre.
- Train or Plane is behind schedule.
- Indian Economy-Chinese Economy
- Talking about different Seasons of the Year and Weather conditions. Learning to say phrases like spring, summer, fall, winter, fairly hot, very cold, very humid, very stuffy, neither hot nor cold, most comfortable, pleasant … etc.

Module III
- Temperature – how to say – What is the temperature in May here?
 - How is the weather in summer in your area?
 - Around 30 degrees
 - Heating, air-conditioning
 - Is winter is Shanghai very cold?
- Talking about birthdays and where you were born?
- The verb “shuo” (speak) saying useful phrases like speak very well, do not speak very well, if speak slowly then understand if speak fast then don’t understand, difficult to speak, difficult to write, speak too fast, speak too slow, listen and can understand, listen and cannot understand … etc.
- Tell the following in Chinese – My name is …. I was born in … (year). My birthday is …… Today is … (date and day of the week). I go to work (school) everyday. I usually leave home at . (O’clock). In the evening, I usually …….. (do what)? At week end, I ………. On Sundays I usually ……………. It is today….. It will soon be my younger sisters birthday. She was born in ….. (year). She lives in ………. (where). She is working (or studying)…… where… She lives in …….. (where.)

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- Elementary Chinese Reader Part-2,3; Lesson 47-54
BIOPROCESS TECHNOLOGY

Course Code: BTB 701 Credit Units: 03

Course Objective:
The objective of the course is to apply the principles of biochemical engineering in large scale cultivation of microorganism for production of important products.

Course Contents:

Module I
Advantage of bioprocess over chemical process. Basic principle in bioprocess technology. Media formulation, Cell culture techniques; Inoculum development and aseptic transfers. Different types of pumps, valves, and line materials, piping conventions etc. used in Biochemical Process

Module II
Process technology for the production of primary metabolites, eg. biomass, ethanol, acetone-butanol, citric acid, amino acids, polysaccharides and plastics.
Ethanol: production by batch, continuous and cell recycle adopted by various technologies practiced in Indian distilleries using molasses and grains. Computation of fermentation efficiency, distillation efficiency and overall efficiency of ethanol production, recovery, uses, glucose effect etc. Power alcohol – definition, uses, merits and demerits of various technologies for its production.
Amino Acid: Genetic Control of metabolic pathway.
Lysine: Indirect and direct fermentation – mechanism of ph of metabolic block in accumulation of L- lysine by inhibition and repression mechanism.
Biomass: Bakers and distillers yeast production using various raw materials, “bios” factors for growth, Crabtree effect, harvesting, different forms and uses.
What are mushroom, different forms of common mushroom production from agro based raw materials and uses. Biofertilizers, biocompost and biopesticides

Module III
Production of secondary metabolites – penicillin, cephalosporins, streptomycin, tetracycline etc. Metabolites from plant and animal cell culture
Penicillin: Classification, various penicillin as precursor and ‘R’ – side chain, penicillinase, 6-APA, penicillin production, harvest and recovery, uses of various forms etc.
Streptomycin: chemical structure, production, harvest and recovery, use by-product of streptomycin fermentation etc.
Tetracycline: chemical structure, production, harvest and recovery, use by-product of tetracycline fermentation etc.

Module IV
Microbial production of industrial enzymes – glucose isomerase, penicillin acylase, cellulase, amylase, lipase, protease etc.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Biochemical Engineering- Kinetics, Mass Transport, Reactors and Gene Expression, W F Weith, John Wiley and Sons Inc
- Biochemical Engineering, S Aiba, A E Humphery and N F Millis, University of Tokyo Press
- Bioprocess Engineering Principles, P Doran, Academic Press
- Principles of Fermentation Technology, P.F. Stanbury and A. Whitaker, Pergamon Press
- Process Engineering in Biotechnology, A T Jackson , Prentice Hall
DOWNSTREAM PROCESSING

Course Code: BTB 702 Credit Units: 03

Course Objective:
The syllabus will help the students to characterize the Bioproducts due to downstreaming process of biotechnological importance.

Course Contents:

Module I
Characteristics of Bioproducts; Coagulation, Flocculation and conditioning of broth.

Module II
Mechanical separation; Cell disruption techniques

Module III
Protein precipitation and separation

Module IV
Aqueous- two- phase extraction, Adsorption-desorption processes

Module V
Chromatographic methods of separation based on size, charge, hydrophobic interactions and biological affinity

Module VI
Membrane based separation; Dialysis, Electrodialysis; Micro filtration, Ultra filtration; Electrophoresis

Module VII
Crystallization; Drying

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:

References:
- Downstream Processing, J.P. Hamel, J.B. Hunter and S.K. Sikdar, American Chemical Society.
- Protein Purification, M.R. Ladisch, R.C. Willson, C.C. Painton and S.E. Builder, American Chemical Society.
STATISTICS FOR BIOLOGY

Course Code: BTB 703 Credit Units: 03

Course Objective:
The course aims to develop competency and expertise in the application of statistical methods applied to biological
data obtained in experimental techniques, methodology and the safe laboratory practice.

Course Contents:

Module I
Statistics and Biostatistics: Preliminary concepts.
Measures of Central Tendency: Mean, Median, Mode
Measures of Dispersion: Range, Standard deviation, Variance

Module II
Probability: Random Experiments, Trial and Event, Sample Space, Mutually Exclusive or Disjoint Events, Mutually
Exhaustive Events, Equally Probable Events, Complementary Event, Classical definition of Probability, Statistical
definition of Probability, Axiomatic definition of Probability, Addition theorem, Multiplication theorem,
Conditional Probability, Bayes' Theorem. Expectation.

Module III: Continuous Distribution
Normal Distribution, Properties of Normal distribution

Module IV: Correlation
Bivariate distribution Correlation, Types of Correlation, Simple Correlation Coefficient for ungrouped data,
Properties and Interpretation of Correlation Coefficient, Coefficient of determination, Scatter diagram, Standard
Error, Probable error of Correlation Coefficient. Rank correlation, Some examples.

Module V: Regression
Definition, Regression lines and Regression Coefficients, Properties of Regression Coefficients, Some examples.
Method of least square: Fitting of straight line

Module VI: Introduction to the following Statistical terms
Parameter, Statistic, Null hypothesis, Alternative hypothesis, Critical region, Type I Error, Type II Error, Level of
significance, P-value and its applications.
Test of Significance for Small samples: One sample t-test, Paired t-test, Degrees of freedom for t-test, F test for
equality of Population variances, Degrees of freedom for F-test.
Test of Significance for Large samples: Normal test for sample mean and population mean, Normal test for two
sample means.
Chi-square Test: Test of goodness of fit, Test of Independence of attributes, Degrees of freedom for Chisquare test,
Coefficient of contingency, Yates’ correction for continuity.
Analysis of Variance: One way and Two way (only Examples)

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Introduction to Biostatistics, Ronald N. Forthfer and Eun Sun Lee, Publisher: Elsevier.
- Statistical Methodology, S.P. Gupta, Publisher: S. Chand & Co.

References:
- Biostatistics: A manual of Statistical Methodology for use in Health, Nutrition and Anthropology, K.
Visweswara Rao. Publisher: Jaypee Brothers Biostatistics: A foundation for analysis in the Health Sciences,
W.W. Daniel, Publisher: John Wiley and Sons
- Statistical Analysis, Kaushal, T.L. Publisher: Kalyani Publishers
- Statistical Methods, Potri, D. Kalyani Publishers.
THERMODYNAMICS OF BIOLOGICAL SYSTEMS

Course Code: BTB 704 Credit Units: 03

Course Objective:
The main aim is to understand the basis of theories related to combustion and dissolution. It will help in the study of heat evolution, control of dissipation and will suggest ways for solving the rate phenomena through the dynamics of mass transfer applicable to biological process

Course Contents:

Module I
Energy, thermodynamics and living processes - an introduction

Module II
Energetic processes in the biosphere: The ecosystem.

Module III
Thermodynamics systems: equilibrium, activity coefficients and phase equilibrium functions of state, cyclic processes, work, energy and metabolic heat; Mechanical equivalent of heat, energy as a function of state.

Module IV: The laws of thermodynamics
Second law; Reversible vs. irreversible processes entropy, work; Combination of the first and second law, Free energy, useful work and delta G. Entropy: Ideality and Molecular Cohesion, Probabilistic nature of Entropy, Order and Disorder.

Module V: Biological systems as open, non-equilibrium systems
Failure of classical thermodynamics in describing biological processes, Standard free energy changes and equilibrium constants, direction and rate.

Module VI: Chemical potential
Visualization of the potential velocity and steady flow; Fick’s law and diffusion. Local Equilibria and steady state: Energy vs. Power; Transducers in biological states, Constitutive equations, Dynamic efficiency and Onsager (nonequilibrium thermodynamics), Prigogine’s principle, Spontaneous coupling and entropy production.

Module VII: Non-equilibrium thermodynamics
Reversible work, exact differentials and function of state, first and second law, The electrochemical potential, External forces an steady state, Fick’s Law, chemical reactions in the steady state, internal entropy production, cells as non-equilibrium stationary states; Diffusion and membrane transport. Thermodynamic analysis of oxidative photophosphorylation, stability of non-equilibrium stationary states, ordering in time and space far from equilibrium, glycolytic oscillations, biological clocks, routes to chaos.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Bioenergetics, A.L. Lehninger, W.A. Benjamin Inc.
- Biophysical Chemistry, C.R. Cantor and P.R. Schimmel, Freeman
- Physical Chemistry for the Chemical and Biological Sciences, R. Chang, University Science Books
- Thermodynamics and Kinetics for the Biological Sciences, G.G. Hammes, John Wiley and Sons Inc.
PHARMACEUTICAL CHEMISTRY AND DRUG DESIGN

Course Code: BTB 705
Credit Units: 03

Course Objective:
The main objective of this course is to make the students well conversant with different molecules that exert a pharmacological action in the body and how the specific action is generated. The contents will introduce them to various drug molecules used in treatment, mitigation and cure of different disease. The above course will be aimed to identify and design drugs that could be potentially useful in the identification of the candidate drugs, which have efficacy in cell culture or animal models, and thus the most effective compounds could be employed based on the above results for being moved through preclinical studies to clinical trials.

Course Contents:

Module I
Introduction of pharmaceutical Chemistry, Overview of drug discovery process.
Physicochemical Properties in Relation to Biological Action – Effects of route of administration, sites of loss, Solubilities and partition coefficients (Ferguson, Hansch), Drug-receptor interactions, Steric features of drugs, The drug receptor, structure-Activity Relationships, Representatives physicochemical properties as relation to biological action

Module II: Drug Targets and their validation
Drug targets classification-DNA, RNA, post-translational, processing enzymes, metabolic enzymes involved in nucleic acid synthesis, G-protein coupled receptors (monomeric transmembrane proteins), small molecule receptors, neuropeptide receptors, ion channels (monomeric multi-transmembrane) proteins, ligand-gated ion channels (oligomeric transmembrane proteins), transporters (multi-transmembrane proteins)
Validation Strategies

Module III: Drug Design Strategies
A. Structure-based design-Docking and denovo methods
B. Design and development of combinatorial libraries for new lead generation
The molecular diversity problem, drug characterization – principles of equilibria, diffusion and kinetics, preformulation: pKa, partition coefficient, solubility, dissolution, chemical stability, and permeability, optimization of ADME characteristics, physico-chemical properties calculation, chemometrics in drug design.
C. QSAR
Statistical techniques behind QSAR, classical QSAR, molecular descriptors 3D QSAR and COMFA, drug design to discovery and development, drug metabolism, toxicity and pharmacokinetics, toxicology considerations, problems and drawbacks on drug discovery and development.

Module IV
Drug toxicity, tolerance, dependence, addiction, Dose Response curves

Module V
Survey of various Drug Classes – Anaesthetics (general, local), Analgesics, Neurotransmitters (adrenergic, cholinergic effects; psychopharmacology), CNS depressants (sedative/hypnotic, major/minor tranquilizers), CNS, Stimulants, Antibiotics (especially b-lactam), Steroids- Mechanism of action and applications

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Principles of Medicinal Chemistry, W.O. Foye, T.L. Lemke, and D.A. Williams, Williams and Wilkins

References:
- Introduction to Biophysical Methods for Protein and Nucleic Acid Research, J.A. Glasel and M.P. Deutscher, Academic Press
• Principles of Drug Action, W.B. Pratt and P. Taylor, Churchill Livingston
• Side Effects and Drug Design, E.J. Lien, Marcel Dekker
• The Anticancer Drugs, W.B. Pratt, R.W. Ruddon, W.D. Ensminger, and J. Maybaum, Oxford University Press
• Pharmaceutical Dosage forms and Drug Delivery Systems, H.C. Ansel, L.V. Allen, N.G. Popovich, Lippincott Williams and Wilkins Publishers
CURRENT TOPICS IN BIOTECHNOLOGY

Course Code: BTB 706 Credit Units: 03

Course Objective:
A complete understanding of the application of biotechnology in various fields can be understood by studying the various modules of this paper. Success of biotechnology depends largely on how it can be effectively utilized in finding solutions to many vexed problems of present day society. The objective of this paper is to familiarize the students with some of the frontier areas if biotechnological applications where a huge scope for further contributions for betterment of the society exists. The paper shall be a interface between the students and the social at large.

Course Contents:

Module I: Bioremediation
Introductory concept, Bioremediation principles, mechanism for Bioremediation of air, water and soil pollutants, bioremediation examples, commercial application of bioremediation techniques, recombinant DNA technology and bioremediation, bioremediation models, bioremediation software

Module II: Genetically modified organisms
Genetically modified food crops, food animals – examples and mode of production, future goals in GM food crops and animals, scientific evaluation of public concerns, legal requirements in production of GMO, current trends and consumer acceptance.

Module III: Molecular medicine
Gene mutation, point mutation, allele specific oligonucleotides, ARMS, oligonucleotide ligation, disease diagnosis with linked genetic markers, fluorescently labeled DNA sequencing.

Module IV: Nano-biotechnology
Introduction, definition, hybrid nanopracticles, smart drug delivery, gene sensors, biomolecule control, nanofluids, nanotechnology in medicine.

Module V: Stem cells
Definition, properties, proliferation, culture of stem cells, medical applications of stem cells, ethical and legal issues in use of stem cells.

Module VI: Cancer Biology
Types of cancer, development, causes and properties of cancer, viruses (Hepatitis B & C, SV4U, polymo marines, papillomarines, adenosines, retrovineses); retroviral oncogenes, proto-oncogenes, tumor suppressor genes, recent advances in detection and treatment of cancer.

Module VII: Forensic Biotechnology
MLP, SLP technology, PCR technology in crime detection, STR and databases, mitochondrial DNA and Y chromosome analysis in forensic science, DNA chip technology, role of molecular biology and biotechnology in crime detection.

Module VIII: Bio sensor
Biological reaction, amperometric biosensor, potentiometric biosensor, conductimetric biosensors, calorimetric biosensor, piezoelectric biosensor, whole-cell biosensor, immunosensors.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/ Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:
- Molecular Biology and Biotechnology, 4th Edn, J.M Walker and R. Rapley, Panima Books
- Cell Biology, David. E. Sadava, Panima Books
• Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring Harbour Laboratory Press
• Environmental Biotechnology – Concepts and Application, Hans – Joachim Jordening and Jesefwinter – Wiley – VCH
Course Code: BTB 707 Credit Units: 03

Course Objective:
Environment constitutes one of the most important ingredients because of the global problems. Thus, it is imperative to understand the Bioremediation of different components of environment. The present course will make them competent academically to envisage the different problems.

Course Contents:

Module I: Introduction
Ecology and ecosystem.

Module II: Environmental pollution
Water, soil and air, noise and thermal pollution, their sources and effects.

Module III: Waste water (sewage and industrial effluents) treatments
Anaerobic and aerobic treatment, conventional and advanced treatment technology, methanogenesis, methanogenic, acetogenic, and fermentative bacteria- technical process and conditions, emerging biotechnological processes in waste - water treatment.

Module IV: Solid waste management
Landfills, composting, earthworm treatment, recycling and processing of organic residues.

Module V: Biodegradation
Biodegradation of xenobiotic compounds, organisms involved in degradation of chlorinated hydrocarbons, substituted simple aromatic compounds, polyaromatic hydrocarbons, pesticides, surfactants and microbial treatment of oil pollution

Module VI: Microbial leaching and mining
Microbial leaching and mining: Extraction of metals from ores; Recovery of metals from solutions; Microbes in petroleum extraction; Microbial desulfurization of coal.

Module VII: Wasteland
Wasteland: Uses and management, bioremediation and bio restoration of contaminated lands.

Module VIII: Environmental genetics
Environmental genetics: degradative plasmids, release of genetically engineered microbes in environment.

Module IX: Hazardous wastes
Hazardous wastes: source management and safety.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/ Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Environmental Biotechnology by PK Mohapatra

References:
Course Objective:
The objective of this paper is to include not only the application of chemical engineering principles/unit operations to bioprocess systems but also to include the principles of disciplines of mechanical, electrical and industrial engineering to design a completely economically optimal process using living or subcomponent of cells.

Course Contents:

Module I
Introduction; general design information; Mass and energy balance; Flow sheeting; Piping and instrumentation; Materials of construction for bioprocess plants; Mechanical design of process equipment; Vessels for biotechnology application; Design of fermenters; Design considerations for maintaining sterility of process streams processing equipment; Selection and specification of equipment for handling fluids and solids; Selection, specification, design of heat and mass transfer equipment used in bioprocess industries; Design of facilities for cleaning of process equipment used in biochemical industries; Utilities for biotechnology production plants; Process economics; Bioprocess validation; Safety considerations; Case studies.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/ Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Chemical Engineers Handbook, R.H. Perry and D.W. Green, McGraw-Hill
- Manufacturing Facilities Design and Material Handling, F.E. Meyers and M.P. Stephens, Prentice Hall
- Plant Design and Economics for Chemical Engineers, M. Peters and K. Timmerhaus, McGraw-Hill
- Process Plant Layout and Piping Design, E. Bausbacher and R. Hunt, Prentice Hall PTR.
Course Objective:
The course helps the students in developing a detailed understanding of drug delivery system. After the completion of this course, the students are expected to be completely familiar with the different drug related aspects of a living body.

Course Contents:

Module I: Basic concepts of Drug Delivery

Module II: Advanced Drug Delivery and Targeting
Basic terminologies in drug delivery and drug targeting, Drug release, Drug targeting, Doses forms, Various routes of administration of drugs (just introduction), Strategies for enhanced therapeutic efficacies (Basic principles)

Module III: Drug administration
Current technologies and new and emerging technologies in oral delivery
Nasal and pulmonary delivery, Opthalmic delivery – structure and physiology of eye, topical and intraocular drug delivery, Drug targeting to CNS – Blood – Brain barrier, physiological and physiochemical factors for delivering to CNS, current and new technologies in CNS delivery

Module IV: Delivery of Genetic material
Basic principles of gene expression, Viral and nonviral vectors in gene delivery, Clinical applications of gene therapy and antisense therapy

Module V: New generation technologies in Drug delivery and targeting
Nanotechnology / Nanobiotechnology, Use of biosensors and challenge of chronopharmacology, Microchips and controlled drug delivery, Genetically engineered cell implants in drug deliver.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Drug Delivery and Targeting, A.M. Hillery, A.W. Lloyd and J. Swarbrick, Harwood Academic Publisher
- Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering), W.M. Saltzman, Oxford University Press
- Handbook of Biodegradable Polymers (Drug Targeting and Delivery), A.J. Domb, J. Kost and D.M. Wiseman, Dunitz Martin Ltd.
- Pharmaceutical Dosage Forms and Drug Delivery Systems, H.C. Ansel, L.V. allen and N.G. Popovich, Lippincott Williams and Wilkins Publisher
ARTIFICIAL NEURAL NETWORKS

Course Code: BTB 710 Credit Units: 03

Course Objective:
This course will enable the students to gain knowledge about a relatively newer area of science. The course is designed to model the different technical properties, applications, besides the closely related aspects of artificial neural networks.

Course Contents:

Module I
Historical background, Why is learning hard?

Module II
Memorization, generalization and function approximation, Linear Associators, Perceptrons and Capacity, Multi-layer neural networks, Maximum Likelihood and Gradient Descent learning, Stochastic gradient descent for supervised learning.

Module III
The backpropagation algorithm, Aspects of Learning Theory and Generalization, Bias vs. variance, Overtraining, pruning and regularization, VC dimension and how much data is enough?

Module IV
Neural networks and analog VLSI, Selected Applications

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Neural Networks: A Comprehensive Foundation, S. Haykin, Prentice Hall
- Neutral Networks for Pattern Recognition, C. Bishop, Oxford University Press
BIOSENSORS

Course Code: BTB 711 Credit Units: 03

Course Objective:
The course aims at developing an understanding of Biosensor technology needed critically for the development of small, sensitive, and selective biosensor devices and detection systems that can reliably operate in real time and in extreme and diverse physical environments. Biosensors are important tools in food safety diagnostics, medical monitors, and detection systems for biological warfare agents.

Course Contents:

Module I
Introduction to MEMS

Module II: Biosensors

Module III: Biomedical sensors
Sensors and transducers: an overview, measurement systems, Classification of Biomedical sensors and transducers, who do we need Biomedical sensors and Transducers? Important Design considerations and system calibration, the future of Biosensors and Transducers, Sensing Layer: The importance of computers in sensors and Transducer technology, Recent Engineering Solutions to Health care using Biosensors and Transducers, Modern health care solutions.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

- Chemical Sensors and Biosensors, B.R. Eggins, John Wiley and Sons Inc.
- Sensors and Sensing in Biology and Engineering, F.G. Barth, wt al, Springer Verlag.
Course Objective:
The course helps in developing a detailed understanding of eukaryotic genome complexity and organization. Current research on the molecular basis of the control of gene expression in eukaryotic system has developed a detailed understanding of techniques of gene diagnostics and DNA profile to acquire the fundamentals of genomics and Proteomics.

Course Contents:

GENOMICS

Module I: Genome Evolution
Origin of genomes, Acquisition of new genes, DNA sequencing – chemical and enzymatic methods, The origins of introns, Genetics to genomics to functional genomics. Forward genetics (Phenotype to gene structure) and Reverse genetics (Gene structure to phenotype).

Module II: Structural Genomics
Chromosome structure and Genome organization, Genome sequencing methods, Genome assembly, Gene identification methods, Sequences Comparison Techniques, Genome annotation techniques.

Module III: Comparative Genomics
Phylogeny, COGS [Cluster of orthologues genes], paralogues and gene displacement, Metabolic Reconstruction, The Basic Principles and Methodology.

Module IV: Functional Genomics
ESTs, SAGE, cDNA Microarrays, Oligonucleotide Microarray Chips, Cancer and genomic microarrays, Application of Microarrays with examples, Microarray Data Analysis; Real Time PCR; Gene finding tools

Module V: Genotyping Background and Applications.
Genetic and physical mapping: Introduction to molecular markers-RFLP, RAPD, AFLP, SSRs and others. Genetic and physical maps, map based cloning, mapping population, southern and \textit{in situ} hybridization for genome analysis, DNA fingerprinting: Single nucleotide polymorphisms, RNA interference, antisense RNA, siRNA, MiRNA, Human Genome Project; Pharmacogenomics: Ethical considerations of genetic testing; Genomics in drug discovery.

PROTEOMICS

Module VI: Fundamentals of Proteomics
Proteomics Basics and 2D Gel Electrophoresis,
Protein Identification and Analysis:
 a. Protein preparation and Separation
 b. Protein Identification by mass spectrometry
 c. Identification of post translation modification
Protein Expression Mapping,
High-throughput cloning of ORFs,
Protein Protein Interaction Mapping: Experimental and Computational. Its application in health and disease,
Microarray - the technique, Experimental design & mass spectrometric data analysis, Application of Microarray in proteome analysis, Proteins Arrays and Protein Chips,
Proteomics Tools and Databases

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>
Text & References:

Text:
- Bioinformatics: From Genomes to Drugs, T. Lengauer, John Wiley and Sons Inc.
- Bioinformatics: Sequence and Genome Analysis, D.W. Mount, Cold Spring Harbor Laboratory Press
- DNA Microarrays: A Practical Approach, M. Schlenga, Oxford University Press
- Genomes II, T.A. Brown
- Biotechnology and Genomics by P.K.Gupta

References:
- A Primer of Genome Science, Greg Gibson and Spencer V. Muse
- Database Annotation in Molecular Biology : Principles and Practice, Arthur M. Lesk
- DNA : Structure and Function, Richard R. Sinden
- Recombinant DNA (Second Edition), James D. Watson and Mark Zoller
- Gene Cloning and DNA Analysis – An introduction (Fourth Edition), T.A. Brown
- Genes & Genomes, Maxine Singer and Paul Berg
- Essential of Genomics and Bioinformatics, C.W. Sensen, John Wiley and Sons Inc.
- Functional Genomics – A Practical Approach, S.P. Hunt and R. Livesey, Oxford University Press
- Proteomics, T. Palzkill, Kluwer Academic Publishers
- Statistical Genomics: Linkage, Mapping and QTL Analysis, B. Liu, CRC Press.
- Genome II by T.A.Brown
Course Contents:

Module I
Isolation of industrially important micro organisms for microbial processes.

Module II
Determination of Thermal Death Point and Thermal death time of micro organisms for design of a sterilizer

Module III
Determination of growth curve of a supplied micro organism and also determine substrate degradation profile and to compute specific growth rate and growth yield from the data obtained.

Module IV
Comparative studies of ethanol production using different substrates.

Module V
Production of single cell protein

Module VI
Production and estimation of alkaline protease

Module VII
Sauer Krant fermentation

Module VIII
Use of alginate for cell immobilization

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>Attendance</td>
<td>Major Experiment</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Course Objective:
The laboratory will help the students to extract different bioproducts during their characterization since any of these products may be of biotechnological importance. They can be exploited in exploring the future biotechnology.

Course Contents:

Module I
Conventional filtration and membrane based filtration

Module II
Protein precipitation and recovery

Module III
Aqueous two-phase separation

Module IV
Ion exchange chromatography

Module V
Gel Permeation chromatography

Module VI
Electrophoresis

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Practical Biochemistry, Sawhney and Singh

References:
- Practical Biochemistry, Principles & Techniques, Keith Wilson and John Walker
- Chromatographic and Membrane Processes in Biotechnology, C.A. Costa and J.S. Cabral, Kluwer Academic Publisher
- Protein Purification, M.R. Lodisch, R.C. Wilson, C.C. Painton and S.E. Builder, American Chemical Society
GENOMICS AND PROTEOMICS LAB

Course Code: BTB 722 Credit Units: 02

Course Contents:

Module I
Three dimensional Structures – In silico study – large molecular complexes RNA polymerase II, ribosome, unstructured proteins

Module II
DNA sequencing methods

Module III
Gene finding tools and Genome annotation

Module IV
Comparison of two given genomes

Module V
Analysis of 2D – IEF data

Module VI
Microarray and Microarray data analysis

Module VII
Inference of protein function from structure

Module IX
Two-hybrid methods

Examination Scheme:

<table>
<thead>
<tr>
<th>IA</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test (Practical Based)</td>
<td>Mid Term Viva</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
COMMUNICATION SKILLS - V

Course Code: BTB 741 Credit Units: 01

Course Objective:
To facilitate the learner with Academic Language Proficiency and make them effective users of functional language to excel in their profession.

Course Contents:

Module I
Introduction to Public Speaking
Business Conversation
Effective Public Speaking
Art of Persuasion

Module II: Speaking for Employment
Types of Interview
Styles of Interview
Facing Interviews-Fundamentals and Practice Session
Conducting Interviews- Fundamentals and Practice Session
Question Answer on Various Dimensions

Module III
Resume Writing
Covering Letters
Interview Follow Up Letters

Module IV: Basic Telephony Skills
Guidelines for Making a Call
Guidelines for Answering a Call

Module V: Work Place Speaking
Negotiations
Participation in Meetings
Keynote Speeches

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>CAF</th>
<th>V</th>
<th>GD</th>
<th>GP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF – Communication Assessment File
GD – Group Discussion
GP – Group Presentation

Text & References:

- Jermy Comfort, Speaking Effectively, et.al, Cambridge
- Krishnaswamy, N, Creative English for Communication, Macmillan
- Taylor, Conversation in Practice
Course Objective:
This course aims at enabling students towards:
Understand the importance of individual differences
Better understanding of self in relation to society and nation
Facilitation for a meaningful existence and adjustment in society
Inculcating patriotism and national pride

Course Contents:

Module I: Individual differences & Personality
Personality: Definition& Relevance
Importance of nature & nurture in Personality Development
Importance and Recognition of Individual differences in Personality
Accepting and Managing Individual differences (adjustment mechanisms)
Intuition, Judgment, Perception & Sensation (MBTI)
BIG5 Factors

Module II: Managing Diversity
Defining Diversity
Affirmation Action and Managing Diversity
Increasing Diversity in Work Force
Barriers and Challenges in Managing Diversity

Module III: Socialization
Nature of Socialization
Social Interaction
Interaction of Socialization Process
Contributions to Society and Nation

Module IV: Patriotism and National Pride
Sense of pride and patriotism
Importance of discipline and hard work
Integrity and accountability

Module V: Human Rights, Values and Ethics
Meaning and Importance of human rights
Human rights awareness
Values and Ethics- Learning based on project work on Scriptures like- Ramayana, Mahabharata, Gita etc.

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Text & References:

• Davis, K. Organizational Behaviour,
• Bates, A. P. and Julian, J.: Sociology - Understanding Social Behaviour
• Dressler, David and Cans, Donald: The Study of Human Interaction
• Lapiere, Richard. T – Social Change
• Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison – Welsley, US.
• Robbins O.B.Stephen:, Organizational Behaviour
FRENCH - VII

Course Code: BTB 744 Credit Units: 02

Course Objective:
Revise the portion covered in the first volume, give proper orientation in communication and culture.

Course Contents:

Module A: Unités 1 – 3: pp. 06 - 46

Contenu lexical:
Unité 1: Rédiger et présenter son curriculum vitae
Exprimer une opinion
Caractériser, mettre en valeur
Parler des rencontres, des lieux, des gens

Unité 2: Imaginer - Faire des projets
Proposer - conseiller
Parler des qualités et des défauts
Faire une demande écrite
Raconter une anecdote
Améliorer son image

Unité 3: Exprimer la volonté et l’obligation
Formuler des souhaits
Exprimer un manque/un besoin
Parler de l’environnement, des animaux, des catastrophes naturelles

Contenu grammatical:
1. Le passé : passé composé/imparfait
2. Pronoms compléments directs/indirects, y/en (idées/chooses)
3. Propositons relatives introduites par qui, que, où
4. Comparatif et superlatif
5. Le conditionnel présent
6. Situer dans le temps
7. Féminin des adjectifs
8. La prise de paroles : expressions
9. Le subjonctif : volonté, obligation

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- le livre à suivre : Campus: Tome 2
Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany
Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Dass- Sätze
Explain the use of the conjunction “-that”, where verb comes at the end of the sentence

Module II: Indirekte Fragesätze
To explain the usage of the “Question Pronoun” as the Relative Pronoun in a Relative Sentence, where again the verb falls in the last place in that sentence.

Module III: Wenn- Sätze
Equivalent to the conditional “If-” sentence in English. Explain that the verb comes at the end of the sentence.

Module IV: Weil- Sätze
Explain the use of the conjunction “because-” and also tell that the verb falls in the last place in the sentence.

Module V: Comprehension texts
Reading and comprehending various texts to consolidate the usage of the constructions learnt so far in this semester.

Module VI: Picture Description
Firstly recognize the persons or things in the picture and identify the situation depicted in the picture;
Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
SPANISH - VII

Course Code: BTB 746
Credit Units: 02

Course Objective:
To enable students acquire working knowledge of the language; to give them vocabulary, grammar, expressions used on telephonic conversation and other situations to handle everyday Spanish situations with ease.

Course Contents:

Module I
Revision of earlier semester modules

Module II
Zodiac signs. More adjectives…to describe situations, state of minds, surroundings, people and places.

Module III
Various expressions used on telephonic conversation (formal and informal)

Module IV
Being able to read newspaper headlines and extracts (Material to be provided by teacher)

Module V
Negative commands (AR ending verbs)

Module VI
Revision of earlier sessions and introduction to negative ER ending commands, introduction to negative IR ending verbs

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español En Directo I A, 1B
- Español Sin Fronteras
- Material provided by the teacher from various sources
Course Objective:
To enable the students to converse in the language with the help of different speech, possibilities, probabilities etc.
Note: The teaching is done in roman as well as Japanese script. 10 more kanjis (Japanese characters) are taught in this semester.

Course Contents:

Module I: Thought
Expressing one’s thought and intentions on different situations.

Module II: Advice
Giving advice, probability, possibility and suggestions.

Module III: Informal Speech
Addressing friends and close people using informal ways.

Module IV: Simultaneous Verbs
Describing two situations simultaneously.

Module V: Possibility
Explaining the probability and possibility of any situation.

Learning Outcome
➢ Students can interact in a formal as well as informal way on above-mentioned topics.

Methods of Private study/ Self help
➢ Hand-outs, audio-aids, assignments and role-plays will support classroom teaching.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Shin Nihon-go no Kiso Lesson No.-31 to 35.
- All vocabulary and topics taught to the students are from the above mentioned book.
Course Objective:
The story of Cinderella first appears in a Chinese book written between 850 and 860 A.D. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Drills
Dialogue practice
Observe picture and answer the question.
About china part – I Lesson 1, 2.

Module II
Pronunciation and intonation
Character Writing and stroke order.

Module III
Ask someone what he/she usually does on weekends?
Visiting people, Party, Meeting, After work….etc.

Module IV
Conversation practice
Translation from English to Chinese and vise-versa.
Short fables.

Module V
A brief summary of grammar.
The optative verb “yuanyi”.
The pronoun “ziji”.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- “Kan tu shuo hua” Part-I Lesson 1-7
SUMMER PROJECT - II

Course Code: BTB 760
Credit Units: 06

Methodology
The students will go to various research institutes/R&D Labs of industries to learn various biotechnological tools and procedures and their utility in commercial applications. The aim of this training is to train the students in the various industrial/Research aspects of commercialization of biotechnological systems.

The students will be supervised by the internal faculty during the tenure of training.

The students shall submit a dissertation on the training undertaken which shall be evaluated by the concerned internal faculty. The Viva Voce shall then be conducted by an external Examiner

Examination Scheme:

Dissertation: 50
Viva Voce: 50

Total: 100
PROJECT MANAGEMENT

Course Code: BTB 801 Credit Units: 03

Course Objective:
The course aims at making an understanding of the tools and the framework necessary to build a cohesive workflow plan that will help develop industry-standard process. Students will also learn project management skills specifically to all design and redesign projects, from the simplest to the most complex

Course Contents:

Module I: Introduction
Conceiving a project, Strategic Management and Project Selection, Work Breakdown Structure

Module II: Project Training
Conflict and Negotiation Developing a project, Appraisal of project – financial, marketing appraisal, technology appraisal and HRD appraisal, Project in Contemporary Organizations.

Module III: Project initiation
Project implementation – Scheduling, Resource Allocation, Monitoring and Information, Project Control

Module IV: Managing Risk
Risk Response Development: Risk Response Control

Module V: Project Termination
Project Auditing and Termination

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:

References:
- Project Management: The Managerial Process, Clifford F. Gray and Erik W. Larson
Course Objective:
The course aims to develop an understanding of the importance, language and techniques of Financial, Cost and Management accounting, skills for preparation and analysis of financial statements to enhance management planning and control, cost classification, allocation and how the costing techniques are useful in the process of managerial decision-making. Student should be able to understand the basic concepts of Company accounts with reference to the Indian context.

Course Contents:

Module I
Relevance of management accounting, Difference between management, financial and cost accounting, Basics concepts of accounting, Financial statements

Module II
Cost accounting fundamentals, cost behaviour / classification, cost volume profit analysis, cost allocation, overhead application

Module III
Variable and Absorption costing, Job-Costing and Process-Costing Systems,

Module IV
Tools for planning and control, Master budget, Flexible Budgets and Variance analysis

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- Cost Accounting, C.Horngreen, Prenctice Hall

References:
- Management Accounting, C. Horngreen, Prenctice Hall
Course Objective:
The Management and Entrepreneurship program is designed to prepare students for an exciting career in today’s competitive era. The course will equip students with the knowledge to cope up with the changing environment because of the advent of technology and other influences. The course will also develop required entrepreneurship skills in the students from a variety of disciplinary perspectives known to be important for independent and corporate entrepreneurs.

Course Contents:

Module I
Principles and function of management, Planning and decision making, Line and staff relationship, management by objective.

Module II
Formal and informal organization, Performance appraisal, Training and development.

Module III
Entrepreneurship and entrepreneurial process, Business plan, Form of ownership suitable for business.

Module IV
Entrepreneurial motivation and leadership, entrepreneurial competencies, entrepreneurial development programme.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT</th>
<th>Attendance</th>
<th>Assignment/Project/Seminar/Quiz</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Text & References:

Text:
- David H Holt, Entrepreneurship : New Venture Creation

References:
- The Practice of Management, P. Drucker, Harper Business
COMMUNICATION SKILLS - VI

Course Code: BTB 841 Credit Units: 01

Course Objective:
The modules are designed to enhance the communicative competence of the learners to equip them with efficient interpersonal communication.

Course Contents:

Module I: Dynamics of Group Discussion
Introduction,
Methodology
Role Functions
Mannerism
Guidelines

Module II: Communication through Electronic Channels
Introduction
Technology based Communication Tools
Video Conferencing
Web Conferencing
Selection of the Effective Tool
E-mails, Fax etc.

Module III: Effective Public Speaking
Types
Essentials
Success in Public Speaking
Dos and Don’ts

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>CAF</th>
<th>V</th>
<th>GD</th>
<th>GP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF – Communication Assessment File
GD – Group Discussion
GP – Group Presentation

Text & References:

- Jermy Comfort, Speaking Effectively, et.al, Cambridge
- Krishnaswamy, N, Creative English for Communication, Macmillan
- Taylor, Conversation in Practice,
Course Objective:
Importance of Personal and Professional excellence
Inculcating the components of excellence

Course Contents:

Module I: Components of Excellence
Personal Excellence:
Identifying long-term choices and goals
Uncovering the talent, strength & style
Analyzing choke points in your personal processes by analysis in area of placements, events, seminars, conference, extracurricular activities, projects etc.

Module II: Managing Personal Effectiveness
Setting goals to maintain focus
Dimensions of personal effectiveness (self disclosure, openness to feedback and perceptiveness)
Integration of personal and organizational vision for effectiveness
A healthy balance of work and play
Managing Stress creatively and productively

Module III: Personal Success Strategy
Time management
Handling criticism and interruptions
Dealing with difficult people
Mapping and evaluating the situations
Identifying long-term goals

Module IV: Positive Personal Growth
Understanding & Developing positive emotions
Positive approach towards future
Resilience during loss and challenge

Module V: Professional Success
Building independence & interdependence
Reducing resistance to change
Continued reflection (Placements, events, seminars, conferences, projects extracurricular Activities etc.)

Module VI: End-of-Semester Appraisal
Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer
Course Code: BTB 844 Credit Units: 02

Course Objective:
Provide students with the necessary linguistic tools
• to face up to different situations of communication
• to enhance their capacity in oral/written comprehension/expression

Course Contents:

Module B: Unités 4, 5, 6: PP. 48 - 86

Contenu lexical:

Unité 4:
1. Présenter une information/les circonstances d’un événement
2. Exprimer la possibilité/la probabilité
3. Exprimer une quantité indéfinie
4. Comprendre et raconter un fait div

Unité 5:
1. Parler d’une passion, d’une aventure
2. Choisir/crier
3. Exprimer la surpise/des sentiments

Unité 6:
1. Exprimer la cause et la conséquence
2. Exprimer la crainte et rassurer
3. Faire une démonstration

Contenu grammatical:

1. la construction passive
2. la forme impersonnelle
3. l’interrogation
4. les adjectifs et les pronoms indéfinis
5. les pronoms interrogatifs et démonstratifs
6. la construction avec deux pronoms
7. le subjonctif dans l’expression des sentiments, de la crainte, du but
8. constructions permettant l’expression de la cause et de la conséquence
9. l’enchaînement des idées : succession et opposition

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & Références:

• le livre à suivre : Campus: Tome 2
Course Objective:
To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.
To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany
Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Reading and comprehension
Reading texts and comprehending them

Module II: Information about German History
Acquiring information about German History through appropriate texts and stories

Module III: Bio data/Curriculum vitae
Writing a bio-data in the proper format with all essential components

Module IV: Informal letters
Reading and writing informal letters

Module V: Business etiquette
Business etiquette in Germany and types of companies

Module VI: Interview skills
To learn to face interviews
Read a text ‘Interviewspiel’

Module VII: Picture Description
Firstly recognize the persons or things in the picture and identify the situation depicted in the picture;
Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs
SPANISH – VIII

Course Code: BTB 846 Credit Units: 02

Course Objective:
To enable students to deal with Spanish situations putting things in perspective, using Past Tense. Enabling them to comprehend and form slightly complex sentences. Give students vocabulary of various situations.

Course Contents:

Module I
Situational exercises/Picture Description:
At the cine
At the Chemist’s/Hospital

Module II
At a corporate client’s informal/formal meeting/gathering
Looking for accommodation

Module III
Past Tense (Indefinido) of regular verbs
Past Tense (Indefinido) of irregular verbs
Exercises related to the above

Module IV
Past Tense (Imperfecto)

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Español En Directo I A, 1B
- Español Sin Fronteras
- Material provided by the teacher from various sources
Course Objective:
To enable the students to converse in the language with the help of different forms as volitional forms, active and passive voice and decision making etc.
Note: The course and teaching in Roman as well as Japanese script. Also introducing next 10 to 20 kanjis.

Course Contents:

Module I: Volitional forms
Explaining the situation when one is thinking of doing something.

Module II: Active and Passive voice
Direct and indirect ways of speech.

Module III: Plain Forms
Sentence patterns using plain forms of verb.

Module IV: Causes and effects
Explaining causes and effects with different forms of verb.

Module V: Decision making
Expressing different occupations and how to make decision.

Learning Outcome
➢ Students can speak the language and will be able to express their views and opinions comfortably.

Methods of Private study/ Self help
➢ Hand-outs, audio-aids, assignments and role-plays will support classroom teaching.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:

- Shin Nihon-go no Kiso Lesson No.-36 to 40.
- All vocabulary and topics taught to the students are from the above mentioned book.
Course Objective:
Paper was first invented in China in 105 AD. It was a closely guarded secret and didn’t reach Europe until the 8th Century. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I
Drills
Dialogue practice
Observe picture and answer the question.
The aspect particle “le” and the modal particle “le”.

Module II
Optative verbs
Texts based on different topics
Enriching vocabulary by dealing with various daily scenarios and situations.

Module III
Sentences with subject predicate construction as its predicate
Pronunciation and intonation
Character writing and stroke order

Module IV
About china Part I Lesson 2,3
Chinese to English and English to Chinese translations from the news paper.

Module V
Questions with an interrogative pronoun
Essays, writing formal letters.
Conversation practice.

Examination Scheme:

<table>
<thead>
<tr>
<th>Components</th>
<th>CT1</th>
<th>CT2</th>
<th>C</th>
<th>I</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage (%)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

C – Project + Presentation
I – Interaction/Conversation Practice

Text & References:
- “Kan tu shuo hua” Part-I Lesson 8-13
MAJOR PROJECT

Course Code: BTB 860 Credit Units: 20

Course Objective:
The students are expected to utilize their scheduled periods by undertaking the project that would be completed during the semester.

Every student shall undertake a major Project. The major Project shall be undertaken in some biotechnology industry or laboratory of repute. Each student shall be assigned to a faculty who shall continuously monitor the progress of the Project in the concerned laboratory or industry. The faculty, in consultation with the concerned scientist of the industry/laboratory, shall decide the topic of the project. At the conclusion of the project the student shall submit a seminar and a dissertation. The dissertation shall be evaluated by the internal faculty/examiner. The student then shall have to appear for the viva voce examination.

GUIDELINES FOR PROJECT FILE
Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation.

Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiqued by the faculty guide and corrected by the student at each stage.

The File is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation.

In general, the File should be comprehensive and include:
- A short account of the activities that were undertaken as part of the project;
- A statement about the extent to which the project has achieved its stated goals;
- A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project;
- Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project;
- Any problems that have arisen that may be useful to document for future reference.

Report Layout
The report should contain the following components:

- **Title or Cover Page**
The title page should contain the following information: Project Title; Student’s Name; Course; Year; Supervisor’s Name.

- **Acknowledgements** (optional)
Acknowledgment to any advisory or financial assistance received in the course of work may be given.

- **Abstract**
A good "Abstract" should be straight to the point; not too descriptive but fully informative. First paragraph should state what was accomplished with regard to the objectives. The abstract does not have to be an entire summary of the project, but rather a concise summary of the scope and results of the project.

- **Table of Contents**
Titles and subtitles are to correspond exactly with those in the text.

- **Introduction**
Here a brief introduction to the problem that is central to the project and an outline of the structure of the rest of the report should be provided. The introduction should aim to catch the imagination of the reader, so excessive details should be avoided.
➤ **Materials and Methods**
This section should aim at experimental designs, materials used. Methodology should be mentioned in details including modifications if any.

➤ **Results and Discussion**
Present results, discuss and compare these with those from other workers, etc. In writing these section, emphasis should be given on what has been performed and achieved in the course of the work, rather than discuss in detail what is readily available in text books. Avoid abrupt changes in contents from section to section and maintain a lucid flow throughout the thesis. An opening and closing paragraph in every chapter could be included to aid in smooth flow.

➤ **Conclusion**
A conclusion should be the final section in which the outcome of the work is mentioned briefly.

➤ **Future prospects**

➤ **Appendices**
The Appendix contains material which is of interest to the reader but not an integral part of the thesis and any problem that have arisen that may be useful to document for future reference.

➤ **References / Bibliography**
This should include papers and books referred to in the body of the report. These should be ordered alphabetically on the author's surname. The titles of journals preferably should not be abbreviated; if they are, abbreviations must comply with an internationally recognised system.

Examples

For research article

For book:

ASSESSMENT OF THE PROJECT FILE
Essentially, marking will be based on the following criteria: the quality of the report, the technical merit of the project and the project execution. Technical merit attempts to assess the quality and depth of the intellectual efforts put into the project. Project execution is concerned with assessing how much work has been put in. The File should fulfill the following *assessment objectives:*

Range of Research Methods used to obtain information

Execution of Research

Data Analysis
Analyse Quantitative/ Qualitative information
Control Quality

Draw Conclusions

Examination Scheme:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation:</td>
<td>100</td>
</tr>
<tr>
<td>Viva Voce:</td>
<td>100</td>
</tr>
<tr>
<td>Total:</td>
<td>200</td>
</tr>
</tbody>
</table>