MATHEMATICS

SECTION-I

STRAIGHT OBJECTIVE TYPE

This section contains 6 multiple choice questions numbered 1 to 6. Each question has 4 choice (A), (B), (C) and (D), out of which ONLY-ONE is correct

1. The total number of local maxima and local minima of the function

$$f(x) = \begin{cases} (2+x)^3, & -3 < x \le -1 \\ x^{2/3}, & -1 < x < 2 \end{cases}$$
 is
(A) 0 (B) 1 (C) 2 (D) 3

Sol: Ans [C]

So total number of local maximum and local minima = 2

2. Let *a* and *b* be non-zero real numbers. Then, the equation

$$(ax^2 + by^2 + c)(x^2 - 5xy + 6y^2) = 0$$

represents

- (A) four straight lines, when c = 0 and a, b are of the same sign
- (B) two straight lines and a circle, when a = b, and c is of sign opposite to that of a
- (C) two straight lines and a hyperbola, when *a* and *b* are of the same sign and *c* is of sign opposite to that of *a*
- (D) a circle and an ellipse, when a and b are of the same sign and c is the sign opposite to that of a

Sol: Ans [B]

If a = b is c is of opposite sign that of a then $ax^2 + by^2 + c = 0$ will represent a circle.

And
$$x^2 - 5xy + 6y^2 = 0$$

- \Rightarrow (x-2y)(x-3y) = 0 will represent two straight line.
- 3. Let $g(x) = \frac{(x-1)^n}{\log \cos^m (x-1)}$; 0 < x < 2, *m* and *n* are integers, $m \neq 0$, n > 0 and let *p* be the left hand

derivative of |x - 1| at x = 1. If $\lim_{x \to 1^+} g(x) = p$, then (A) n = 1, m = 1 (B) n = 1, m = -1 (C) n = 2, m = 2 (D) n > 2, m = n

1

Sol: Ans [C]

$$f(x) = |x - 1| = \begin{cases} x - 1, & x \ge 1 \\ -x + 1, & x < 1 \end{cases}$$

$$P = \text{L.H.D.} = \lim_{x \to 1^{-}} f'(x)$$

$$= \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{-(1 - h) + 1 - 0}{-h}$$

$$= \lim_{h \to 0} \frac{-1 + h + 1}{-h} = -1$$

$$\lim_{x \to 1^{+}} g(x) = \lim_{h \to 0} g(1 + h)$$

$$= \frac{(1 + h - 1)^{n}}{\log \cos^{m}(1 + h - 1)}$$

$$= \lim_{h \to 0} \frac{h^{n}}{\log \cos^{m}(h)}$$

$$= \lim_{h \to 0} \frac{-nh^{n-1}}{\cos^{m}h} \cdot m\cos^{m-1}n(-\sin h)$$

$$= \lim_{h \to 0} \frac{-nh^{n-1}}{m\sin h}$$
If $n = 2, m = 2$ then, $\lim_{x \to 1^{+}} g(x) = -1$

4. If 0 < x < 1, then

 $\sqrt{1+x^2} [\{x \cos(\cot^{-1}x) + \sin(\cot^{-1}x)\}^2 - 1]^{1/2} =$

(A)
$$\frac{x}{\sqrt{1+x^2}}$$
 (B) x (C) $x\sqrt{1+x^2}$ (D) $\sqrt{1+x^2}$

Sol: Ans [C]

 $\cot^{-1}x = \theta$ $x = \cot \theta$

$$\sqrt{1 + \cot^2 \theta} \left[(\cot \theta \cos \theta + \sin \theta)^2 - 1 \right]^{1/2} = \operatorname{cosec} \theta \left[\frac{1 - \sin^2 \theta}{\sin^2 \theta} \right]^{1/2}$$
$$= \cot \theta \operatorname{cosec} \theta$$
$$= x\sqrt{1 + x^2}$$

5. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vector \hat{a} , \hat{b} , \hat{c} such that

$$\hat{a}\cdot\hat{b}=\hat{b}\cdot\hat{c}=\hat{c}\cdot\hat{a}=\frac{1}{2}.$$

Then, the volume of the parallelopiped is

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

Sol: Ans [A]

$$\hat{b} \cdot \hat{c} = \frac{1}{2} \qquad \text{(Let } \alpha \text{ is the angle between } \hat{b} \text{ and } \hat{c} \text{)}$$

$$\Rightarrow 1 \cdot 1 \cos \alpha = \frac{1}{2}$$

$$\Rightarrow \alpha = \pi/3$$

$$\hat{a} \cdot \frac{(\hat{b} + \hat{c})}{2} = \frac{\hat{a} \cdot \hat{b} + \hat{a} \cdot \hat{c}}{2} = \frac{1}{2}$$

$$1 \cdot \frac{\sqrt{3}}{2} \cos \theta = \frac{1}{2}$$

$$\hat{c} \cos \theta = \frac{1}{\sqrt{3}}$$

$$[\hat{a} \ \hat{b} \ \hat{c}] = | \ \hat{a} \cdot (\hat{b} \times \hat{c}) | = | \ \hat{a} | | \ \hat{b} \times \hat{c} | \cos(90 - \theta)$$

$$= 1 | \ \hat{b} \times \hat{c} | \sin \theta$$

$$\hat{b} \times \hat{c} = 1 \cdot 1 \cdot \sin 60 \ \hat{n} = \frac{\sqrt{3}}{2} \hat{n}$$

$$| \ \hat{b} \times \hat{c} | = \frac{\sqrt{3}}{2}$$

$$\sin \theta = \sqrt{1 - \frac{1}{3}} = \frac{\sqrt{2}}{\sqrt{3}}$$

$$\Rightarrow \quad [\hat{a} \ \hat{b} \ \hat{c}] = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{3}} = \frac{1}{\sqrt{2}}$$

6. Consider the two curves

$$C_1 : y^2 = 4x$$

 $C_2 : x^2 + y^2 - 6x + 1 = 0$

Then,

- (A) C_1 and C_2 touch each other only at one point
- (B) C_1 and C_2 touch each other exactly at two point
- (C) C_1 and C_2 intersect (but do not touch) at exactly two points
- (D) C_1 and C_2 neither intersect nor touch each other

Sol: Ans [B]

 \Rightarrow Circle and parabola touch at (1, 2) and (1, -2).

SECTION- II MULTIPLE CORRECT ANSWERS TYPE

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choice (A), (B), (C) and (D), out of which ONE OR MORE is/are correct.

7. Let f(x) be an non-constant twice differentiable function defined on $(-\infty, \infty)$ such that f(x) = f(1-x)

and
$$f'\left(\frac{1}{4}\right) = 0$$
. Then,

(A)
$$f''(x)$$
 vanishes at least twice on [0, 1]

(B)
$$f'\left(\frac{1}{2}\right) = 0$$

(C)
$$\int_{-1/2}^{1/2} f\left(x + \frac{1}{2}\right) \sin x \, dx = 0$$
 (D) $\int_{0}^{1/2} f(t) e^{\sin \pi t} \, dt = \int_{1/2}^{1} f(1-t) e^{\sin \pi t} \, dt$

Sol: Ans [A,B,C,D]

$$f(x) = f(1 - x)$$

$$\Rightarrow f'(x) = -f'(1 - x)$$

Putting $x = \frac{1}{2}, f'\left(\frac{1}{2}\right) = -f'\left(\frac{1}{2}\right) \Rightarrow f'\left(\frac{1}{2}\right) = 0$

(B) is correct

Also putting $x = \frac{1}{4}$, $f'\left(\frac{1}{4}\right) = -f'\left(\frac{3}{4}\right) = 0$

$$\Rightarrow f'\left(\frac{1}{4}\right) = 0 = f'\left(\frac{3}{4}\right)$$

So $f'\left(\frac{1}{4}\right) = f'\left(\frac{1}{2}\right) = f'\left(\frac{3}{4}\right) = 0$

So by Rolle's Theorem, f''(x) vanishes at least once in $\left[\frac{1}{4}, \frac{1}{2}\right]$ and at least once in $\left[\frac{1}{2}, \frac{3}{4}\right]$

 \Rightarrow f''(x) vanishes at least twice in [0, 1]

(A) is correct

 $\operatorname{Now} f(x) = f(1-x)$

Replacing x by $x + \frac{1}{2}$,

$$f\left(x+\frac{1}{2}\right) = f\left(\frac{1}{2}-x\right)$$

Now

$$I = \int_{-1/2}^{1/2} f\left(x + \frac{1}{2}\right) \sin x \, dx$$
$$= \int_{-1/2}^{1/2} f\left(\frac{1}{2} - x\right) \sin(-x) \, dx$$

(Replacing x by
$$-\frac{1}{2} + \frac{1}{2} - x$$
 i.e., $-x$ as $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$)

$$= \int_{-1/2}^{1/2} f\left(\frac{1}{2} + x\right) \sin x \, dx$$
$$= -I$$
$$I = 0$$

(C) is correct

Now

 \Rightarrow

$$I_{1} = \int_{0}^{1/2} f(t) e^{\sin \pi t} dt$$

Putting $u = t + 1/2 \implies du = dt$

$$I_{1} = \int_{1/2}^{1} f\left(u - \frac{1}{2}\right) e^{\sin \pi (u - 1/2)} du$$
$$= \int_{1/2}^{1} f\left(u - \frac{1}{2}\right) e^{-\cos \pi u} du$$
$$I_{2} = \int_{1/2}^{1} f(1 - t) e^{\sin \pi t} dt$$

$$= \int_{1/2}^{1} f\left(1 - \left(\frac{3}{2} - t\right)\right) e^{\sin \pi \left(\frac{3}{2} - t\right)} dt$$
(Replacing t by $\frac{1}{2} + 1 - t$ i.e., $\frac{3}{2} - t$ as $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$)
$$= \int_{1/2}^{1} f\left(t - \frac{1}{2}\right) e^{\sin \left(\frac{3\pi}{2} - \pi t\right)} dt$$

$$= \int_{1/2}^{1} f\left(t - \frac{1}{2}\right) e^{-\cos \pi t} dt$$

$$\Rightarrow I_1 = I_2$$
 (D) is correct

8. Let

$$S_n = \sum_{k=1}^n \frac{n}{n^2 + kn + k^2}$$
 and $T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + k^2}$

for *n* = 1, 2, 3, Then,

(A)
$$S_n < \frac{\pi}{3\sqrt{3}}$$
 (B) $S_n > \frac{\pi}{3\sqrt{3}}$ (C) $T_n < \frac{\pi}{3\sqrt{3}}$ (D) $T_n > \frac{\pi}{3\sqrt{3}}$

Sol: Ans [A,D]

$$S_n = \sum_{k=1}^n \frac{n}{n^2 + kn + k^2} = \sum_{k=1}^n \frac{1}{n} \left(\frac{1}{1 + (k/n) + (k/n)^2} \right)$$

Conisider a function $f(x) = \frac{1}{1 + x + x^2}$

$$f'(x) = \frac{-(1+2x)}{(1+x+x^2)^2} < 0 \text{ for } x > 0$$

So f(x) is a decreasing function.

So
$$S_n = \sum_{m=1}^n \frac{1}{n} f\left(\frac{k}{n}\right)$$

Now putting k = 1,

Ist term of $S_n = \frac{1}{n} f\left(\frac{1}{n}\right)$, represents area of Ist strip as shown in figure as A_1 .

Putting k = 2,

$$2^{nd}$$
 term of $S_n = \frac{1}{n} f\left(\frac{2}{n}\right)$, represents area of 2^{nd} strip as shown in figure as A_2 .

Similarly putting k = n,

last term of
$$S_n = \frac{1}{n} f^{(1)}$$
 represents area of n^{th} strip as shown in figure as A_n .

$$A_1 = \frac{1}{A_2} + \frac{1}{A_3} + \frac{$$

So $S_n < \frac{\pi}{3\sqrt{3}}$

(A) is correct.

$$T_{n} = \sum_{k=0}^{n} \frac{n}{n^{2} + kn + k^{2}} = \sum_{k=0}^{n} \frac{1}{n} \left(\frac{1}{1 + (k/n) + (k/n)^{2}} \right)$$
$$= \sum_{k=0}^{n-1} \frac{1}{n} f\left(\frac{k}{n}\right)$$

Putting k = 0, 1st term of $T_n = \frac{1}{n} f(0)$ represents area of Ist strip as shown in graph as a_1

Putting k = 1, 2^{nd} term of $T_n = \frac{1}{n} f\left(\frac{1}{n}\right)$ represents area of 2^{nd} strip as shown in graph as a_2

PT)

Putting k = 2, 3^{rd} term of $T_n = \frac{1}{n} f\left(\frac{2}{n}\right)$ represents area of 3^{rd} strip as shown in graph as a_3 Putting k = n - 1, last term of $T_n = \frac{1}{n} f\left(\frac{n-1}{n}\right)$ represents area of last strip as shown in graph as a_n

- So $T_n > \frac{\pi}{3\sqrt{3}}$ (D) is correct.
- **9.** A straight line through the vertex P of a triangle PQR intersects the side QR at the point S and the circumcircle of the triangle PQR at the point T. If S is not the centre of the circumcircle, then

(A)
$$\frac{1}{PS} + \frac{1}{ST} < \frac{2}{\sqrt{QS \times SR}}$$

(B) $\frac{1}{PS} + \frac{1}{ST} > \frac{2}{\sqrt{QS \times SR}}$
(C) $\frac{1}{PS} + \frac{1}{ST} < \frac{4}{QR}$
(D) $\frac{1}{PS} + \frac{1}{ST} > \frac{4}{QR}$

Sol: Ans [D]

As from S, two chords of the circle are drawn,

$$PS \cdot ST = SQ \cdot SR \qquad \dots(i)$$
Now $\frac{1}{PS} + \frac{1}{ST} = \frac{PS + ST}{PS \cdot ST}$
Now $PS + ST \ge 2\sqrt{PS \cdot ST}$ (Equality holds if $PS = ST$, i.e. S is mid-point of
 $\Rightarrow \frac{PS + ST}{\sqrt{PS \cdot ST}} \ge 2$
So $\frac{1}{PS} + \frac{1}{ST} = \frac{PS + ST}{PS \cdot ST} = \frac{PS + ST}{\sqrt{PS \cdot ST}} \times \frac{1}{\sqrt{PS \cdot ST}}$
 $\ge \frac{2}{\sqrt{PS \cdot ST}} = \frac{2}{\sqrt{SQ \cdot SR}}$ (Using (i))

So
$$\frac{1}{PS} + \frac{1}{ST} \ge \frac{2}{\sqrt{SQ \cdot SR}}$$

Now $\sqrt{SQ \cdot SR} \le \frac{SQ + SR}{2} = \frac{QR}{2}$ (1)

Equality holds if
$$SQ = SR$$
, i.e., S is mid-point of QR)

$$\Rightarrow \quad \frac{1}{\sqrt{SQ \cdot SR}} \ge \frac{2}{QR}$$

So
$$\frac{1}{PS} + \frac{1}{ST} \ge \frac{2}{\sqrt{SQ \cdot SR}} \ge \frac{4}{QR}$$

Both equalities in last equation hold if S is mid-point of QR and PT both

- \Rightarrow Perpendicular bisectors of *PT* and *QR* will intersect in *S*.
- \Rightarrow S will become centre of circle, which is not given. So both equalities can't hold.

So,
$$\frac{1}{PS} + \frac{1}{ST} > \frac{4}{QR}$$
 (D) is correct.

- 10. Let $P(x_1, y_1)$ and $Q(x_2, y_2)$, $y_1 < 0$, $y_2 < 0$, be the end points of the latus rectum of the ellipse $x^2 + 4y^2 = 4$. The equations of parabolas with latus rectum PQ are
 - (A) $x^2 + 2\sqrt{3} y = 3 + \sqrt{3}$ (B) $x^2 - 2\sqrt{3} y = 3 + \sqrt{3}$ (C) $x^2 + 2\sqrt{3} y = 3 - \sqrt{3}$ (D) $x^2 - 2\sqrt{3} y = 3 - \sqrt{3}$

Sol: Ans [B,C]

Ellipse $x^2 + 4y^2 = 4$ can be written as $\frac{x^2}{4} + y^2 = 1$

$$\Rightarrow a = 2, b = 1 \Rightarrow e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\Rightarrow \quad e = \frac{\sqrt{3}}{2}$$

Find points of latus rectum are $P \equiv \left(-ae, \frac{-b^2}{a}\right) \equiv \left(-\sqrt{3}, \frac{-1}{2}\right)$ and $Q \equiv \left(ae, \frac{-b^2}{a}\right) \equiv \left(\sqrt{3}, \frac{-1}{2}\right)$

P, Q are end-points of latus rectum of parabola also.

So focus of parabola \equiv mid-point of latus rectum PQ

$$\equiv \left(0, \, \frac{-1}{2}\right)$$

So axis of parabola is x = 0

Length of latus rectum = $4a = PQ = 2\sqrt{3}$

So vertex will lie at a distance of $a = \frac{\sqrt{3}}{2}$ from focus either in upward direction or downward direction.

So vertex could be
$$\left(0, \frac{\sqrt{3}-1}{2}\right)$$
 or $\left(0, -\left(\frac{\sqrt{3}+1}{2}\right)\right)$

So parabola could be $x^2 = 2\sqrt{3}\left(y + \frac{\sqrt{3} + 1}{2}\right)$ or $x^2 = -2\sqrt{3}\left(y - \frac{\sqrt{3} - 1}{2}\right)$

$$\Rightarrow x^2 - 2\sqrt{3} y = 3 + \sqrt{3} \text{ or } x^2 + 2\sqrt{3} y = 3 - \sqrt{3}$$

(B) & (C) are correct.

SECTION- III

ASSERTION-REASON TYPE

This section contains 4 reasoning type questions. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

11. Consider three planes

$$P_{1}: x - y + z = 1$$
$$P_{2}: x + y - z = -1$$
$$P_{3}: x - 3y + 3z = 2$$

Let L_1, L_2, L_3 be the lines of intersection of the planes P_2 and P_3, P_3 and P_1 , and P_1 and P_2 , respectively.

STATEMENT-1: At least two of the lines L_1 , L_2 and L_3 are non-parallel.

and

STATEMENT-2: The three planes do not have a common point.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Sol: Ans [D]

 $P_{1}: x - y + z = 1$ $P_{2}: x + y - z = -1$ $P_{3}: x - 3y + 3z = 2.$

dr's of lines L_1, L_2, L_3 are (0, -4, -4), (0, 2, 2) and (0, 2, 2)

As all lines are parallel because ratio of dr's are same.

 \Rightarrow Statement-1 is false

As
$$\Delta = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -3 & 3 \end{vmatrix} = 0$$
, but at least one of Δ_1 , Δ_2 and Δ_3 is not zero.

- \Rightarrow No solution for given system
- \Rightarrow No common point
- 12. Consider the system of equations

$$x - 2y + 3z = -1$$
$$-x + y - 2z = k$$
$$x - 3y + 4z = 1.$$

STATEMENT-1: The system of equations has no solution for $k \neq 3$. and

STATEMENT-2: The determinant $\begin{vmatrix} 1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1 \end{vmatrix} \neq 0$, for $k \neq 3$.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Sol: Ans [A]

$$\begin{aligned} x - 2y + 3z &= -1 \\ -x + y - 2z &= k \\ x - 3y + 4z &= 1 \end{aligned}$$

as
$$\begin{vmatrix} 1 & -2 & 3 \\ -1 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} = 0$$

and
$$\begin{vmatrix} 1 & -1 & 3 \\ -1 & k & -2 \\ 1 & 1 & 4 \end{vmatrix} = (k-3) \neq 0$$
, for $k \neq 3$

- \Rightarrow Statement-1 and 2 are true and statement-2 is correct explanation
- 13. Let f and g be real valued functions defined on interval (-1, 1) such that g''(x) is continuous, $g(0) \neq 0$, g'(0) = 0, $g''(0) \neq 0$ and $f(x) = g(x) \sin x$.

STATEMENT-1: $\lim_{x \to 0} [g(x) \cot x - g(0) \csc x] = f''(0)$.

and

STATEMENT-2: f'(0) = g(0).

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Sol: Ans [B]

$$g(0) \neq 0, g'(0) = 0, g''(0) \neq 0, f(x) = g(x) \sin x$$
$$\lim_{x \to 0} (g(x) \cot x - g(0) \csc x) = f''(0)$$

Because

$$f'(x) = g'(x)\sin x + \cos x \ g(x)$$

$$f''(x) = g''(x)\sin x + \cos x \ g'(x) + \cos x \ g'(x) - \sin x \ g(x)$$

$$f''(0) = 0 + g'(0) + g'(0) - 0 = 0$$

Now,

$$\lim_{x \to 0} \frac{g(x)\cos x - g(0)}{\sin x} = \frac{g'(x)\cos x - \sin x g(x) - 0}{\cos x}$$

$$=\frac{g'(0)-0}{1}=0$$

Also f'(0) = g(0)

 \Rightarrow (B) is correct answer.

14. Consider the system of equations

ax + by = 0, cx + dy = 0, where $a, b, c, d \in \{0, 1\}$.

STATEMENT-1: The probability that the system of equations has a unique solution is 3/8.

and

STATEMENT-2: The probability that the system of equations has a solution is 1.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Sol: Ans [B]

ax + by = 0, cx + dy = 0; $a, b, c, d \in \{0, 1\}$

For unique solution needed

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

 $\Rightarrow ad - bc \neq 0$

Total no. of possible determinants are $= 2 \times 2 \times 2 \times 2 \implies 16$

No. of determinants such that $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$ are 6

$$\Rightarrow P = \frac{6}{16} = \frac{3}{8}$$

Obviously system of equation will always have a solution since $\Delta_x = \Delta_y$.

 \Rightarrow Both statement-1 and statement-2 are true, but statement-2 is not the correct explanation

SECTION- IV

LINKED COMPREHENSION TYPE

This section contains 3 Paragraphs. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Paragraph for Question Nos. 15 to 17

A circle *C* of radius 1 is inscribed in an equilateral triangle *PQR*. The points of contact of *C* with the sides *PQ*, *QR*, *RP* are *D*, *E*, *F*, respectively. The line *PQ* is given by the equation $\sqrt{3} x + y - 6 = 0$ and the point *D* is $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$. Further, it is given that the origin and the centre of *C* are on the same side of the line *PO*.

- **15.** The equation of circle *C* is
 - (A) $(x 2\sqrt{3})^2 + (y 1)^2 = 1$
 - (C) $(x \sqrt{3})^2 + (y + 1)^2 = 1$

Sol: Ans [D]

Centre \Rightarrow (*h*, *k*)

as
$$\sqrt{3} \cdot 0 + 0 - 6 < 0$$

$$\Rightarrow -\frac{(\sqrt{3h+k-6})}{\sqrt{3+1}} = 1$$

(B)
$$(x - 2\sqrt{3})^2 + (y + 1/2)^2 = 1$$

(D)
$$(x - \sqrt{3})^2 + (y - 1)^2 = 1$$

$$\Rightarrow \sqrt{3} h + k - 6 = -2$$

$$\Rightarrow \sqrt{3} h + k = 4 \qquad \dots(i)$$

Equation of *DC*

$$x - \sqrt{3} y = k'$$

$$\frac{3\sqrt{3}}{2} - \sqrt{3} \frac{3}{2} = k'$$

$$\Rightarrow k' = 0$$

$$\Rightarrow \text{ equation of DC is}$$

$$x - \sqrt{3} y = 0$$

$$h - \sqrt{3} k = 0 \qquad \dots(ii)$$

by (i) & (ii)

by (1) & (11)

$$h = \sqrt{3}$$
, $k = 1$

Equation of circle is $(x - \sqrt{3})^2 + (y - 1)^2 = 1$

16. Points *E* and *F* are given by

(A)
$$\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right) (\sqrt{3}, 0)$$

(C) $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right) \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Sol: Ans [A]

$$\frac{(\sqrt{3}+i) - \left(\frac{3\sqrt{3}}{2} + i\frac{3}{2}\right)}{(\sqrt{3}+i) - (x_1 + iy_1)} = e^{i(2\pi/3)}$$

$$\Rightarrow E = (\sqrt{3}, 0)$$

Similarly $\frac{(\sqrt{3} + i) - (\sqrt{3} + i0)}{(\sqrt{3} + i) - (x_2 + iy_2)} = e^{i(2\pi/3)}$
$$\Rightarrow F = \left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$$

 \Rightarrow Points are $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$ $(\sqrt{3}, 0)$

(B) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) (\sqrt{3}, 0)$

(D) $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

17. Equation of the sides QR, RP are

(A)
$$y = \frac{2}{\sqrt{3}}x + 1, y = -\frac{2}{\sqrt{3}}x - 1$$
 (B) $y = \frac{1}{\sqrt{3}}x, y = 0$
(C) $y = \frac{\sqrt{3}}{2}x + 1, y = -\frac{\sqrt{3}}{2}x - 1$ (D) $y = \sqrt{3}x, y = 0$

Sol: Ans [D]

Slope of
$$EC = \frac{1-0}{\sqrt{3}-\sqrt{3}} = \infty$$

 \Rightarrow QR is parallel to x-axis as point $E = (\sqrt{3}, 0)$

 \Rightarrow equation of QR is y = 0

Slope of
$$CF = \frac{1 - 3/2}{\sqrt{3} - \sqrt{3}/2} = \frac{-1/2}{\sqrt{3}/2} = -\frac{1}{\sqrt{3}}$$

Slope of *PR* \Rightarrow $m \times \left(-\frac{1}{\sqrt{3}}\right) = -1$ \Rightarrow $m = \sqrt{3}$

$$\Rightarrow$$
 equation of line is $y - \frac{3}{2} = \sqrt{3} \left(x - \frac{\sqrt{3}}{2} \right)$

- $\Rightarrow y = \sqrt{3} x$
- $\Rightarrow \quad y = \sqrt{3} \ x, \ y = 0$

Paragraph for Question Nos. 18 to 20

Consider the functions defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line.

If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real valued differentiable function y = f(x).

If $x \in (-2, 2)$, the equation implicitly defines a unique real valued differentiable function y = g(x) satisfying g(0) = 0.

18. If $f(-10\sqrt{2}) = 2\sqrt{2}$, then $f''(-10\sqrt{2}) =$

(A)
$$\frac{4\sqrt{2}}{7^3 3^2}$$
 (B) $-\frac{4\sqrt{2}}{7^3 3^2}$ (C) $\frac{4\sqrt{2}}{7^3 3}$ (D) $-\frac{4\sqrt{2}}{7^3 3}$

Sol: Ans [B]

$$y^{3} - 3y + x = 0$$

$$3y^{2} \frac{dy}{dx} - 3 \frac{dy}{dx} + 1 = 0$$
 ...(i)

$$\Rightarrow \quad \frac{dy}{dx} = -\frac{1}{3y^{2} - 3} = -\frac{1}{21}$$

From (i),

$$6y\left(\frac{dy}{dx}\right)^2 + 3y^2 \frac{d^2y}{dx^2} - 3\frac{d^2y}{dx^2} = 0$$

$$6 \times 2\sqrt{2} \times \frac{1}{(21)^2} + 3 \times 8\frac{d^2y}{dx^2} - 3\frac{d^2y}{dx^2} = 0$$

$$\frac{d^2y}{dx^2} = \frac{4\sqrt{2}}{7^3 3^2}$$

19. The area of the region bounded by the curve y = f(x), the *x*-axis, and the lines x = a and x = b, where $-\infty < a < b < -2$, is

(A)
$$\int_{a}^{b} \frac{x}{3((f(x))^{2} - 1)} dx + bf(b) - af(a)$$

(B) $-\int_{a}^{b} \frac{x}{3((f(x))^{2} - 1)} dx + bf(b) - af(a)$
(C) $\int_{a}^{b} \frac{x}{3((f(x))^{2} - 1)} dx - bf(b) + af(a)$
(D) $-\int_{a}^{b} \frac{x}{3((f(x))^{2} - 1)} dx - bf(b) + af(a)$

Sol: Ans [A] $y^3 - 3y + x = 0$

$$3y^{2} \frac{dy}{dx} - 3\frac{dy}{dx} + 1 = 0$$

$$\Rightarrow \quad 3(y^{2} - 1)dy + dx = 0$$

Area = $\int_{a}^{b} y \, dx$,

$$= b f (b) - a f (a) - \int_{f(a)}^{f(b)} x \, dy$$

$$= b f (b) - a f (a) + \int_{a}^{b} \frac{x}{3(y^{2} - 1)} \, dx$$

20. $\int_{-1}^{1} g'(x) dx =$ (A) 2g(-1) (B) 0 (C) -2g(1) (D) 2g(1)Sol: Ans [] g(0) = 0 $\int_{-1}^{1} g'(x) dx = \int_{-1}^{1} \left(\frac{dy}{dx}\right) dx = \int_{-1}^{1} dy$ = y(1) - y(-1) = 2y(1) = 2g(1)Put x = 1, $y^{3} - 3y + 1 = 0$...(i)

$$x = -1 \implies y^3 - 3y - 1 = 0$$
 ...(ii)

If α be the root of equation (i) then ($-\alpha$) be the root of equation (ii)

$$\Rightarrow$$
 $y(-1) = -y(1)$

Paragraph for Question Nos. 21 to 23

Let A, B, C be three sets of complex numbers as defined below

}

$$A = \{z : \text{Im} z \ge 1\}$$
$$B = \{z : |z - 2 - i| = 3\}$$
$$C = \{z : \text{Re}((1 - i)z) = \sqrt{2}\}$$

21. The number of elements in the set $A \cap B \cap C$ is

(A) 0 (B) 1 (C) 2 (D)
$$\infty$$

Sol: Ans [B]

The locus of *B* is the circle $(x - 2)^2 + (y - 1)^2 = 9$...(i)

The locus of *C* is the line $x + y = \sqrt{2}$

The locus of *A* is the region $y \ge 1$

Solving for $B \cap C$, we should get two points only (as circle and line can intersect in maximum 2 points) Solving for $B \cap C$,

 $x = \sqrt{2} - y$

Putting it in (i),

 $(\sqrt{2} - y - 2)^{2} + (y - 1)^{2} = 9$ $\Rightarrow (y + 2 - \sqrt{2})^{2} + (y - 1)^{2} = 9$ $\Rightarrow 2y^{2} + y(2 - 2\sqrt{2}) - 4\sqrt{2} - 2 = 0$ $\Rightarrow y^{2} + y(1 - \sqrt{2}) - 2\sqrt{2} - 1 = 0$ $\Rightarrow y = \frac{\sqrt{2} - 1 \pm \sqrt{7 + 6\sqrt{2}}}{2}$ Now $7 + 6\sqrt{2} \ge 13$ $\Rightarrow \sqrt{7 + 6\sqrt{2}} \ge 3$ So $\frac{\sqrt{2} - 1 - \sqrt{7 + 6\sqrt{2}}}{2} < 0$ so rejected while taking intersection with *A*. $\Rightarrow y = \frac{\sqrt{2} - 1 + \sqrt{7 + 6\sqrt{2}}}{2} > \frac{3}{2}$ so selected while taking intersection with *A*. So $A \cap B \cap C$ gives just one point.

22. Let z be any point in $A \cap B \cap C$. Then, $|z + 1 - i|^2 + |z - 5 - i|^2$ lies between (A) 25 and 20 (D) 20 and 24 (C) 25 and 20 (D) 40 and 44

Sol: Ans [C]

As we know that z is just one point satisfying $(x - 2)^2 + (y - 1)^2 = 9$ and $x + y = \sqrt{2}$ and $y \ge 1$ Now

$$|z + 1 - i|^{2} + |z - 5 - i|^{2} = |x + iy + 1 - i|^{2} + |x + iy - 5 - i|^{2}$$

= $(x + 1)^{2} + (y - 1)^{2} + (x - 5)^{2} + (y - 1)^{2}$
= $2x^{2} - 8x + 26 + 2(y - 1)^{2}$
= $2((x - 2)^{2} + (y - 1)^{2}) + 18$
= $2 \times 9 + 18$
= 36

So lies between 35 nd 39.

23. Let z be any point is $A \cap B \cap C$ and let w be any point satisfying |w-2-i| < 3. Then, |z|-|w|+3 lies between

(A) –6 and 3	(B) -3 and 6	(C) -6 and 6	(D) -3 and 9
--------------	----------------	------------------	----------------

Sol: Ans [B]

 $||w| - |z + i|| \le |w - 2 - i| < 3$ $\Rightarrow ||w| - \sqrt{5}| < 3$ $\Rightarrow -3 < |w| - \sqrt{5} < 3$ $\Rightarrow 0 \le |w| < 3 + \sqrt{5}$ $\Rightarrow -\sqrt{5} < 3 - |w| \le 3$ Now $(x-2)^2 + (y-1)^2 = 9$ $\Rightarrow (y-1)^2 \le 9$ $\Rightarrow |y-1| \leq 3$ $\Rightarrow -3 \le y - 1 \le 3$ $\Rightarrow 1 \le y \le 4$ $(x-2)^2 + (y-1)^2 = 9$ $\Rightarrow x^2 + y^2 = 4x + 2y + 4$ =4(x + y) + 4 - 2y $=4\sqrt{2} + 4 - 2y$ (x + y = $\sqrt{2}$) Now $1 \le y \le 4$ $\Rightarrow -2 \ge -2y \ge -8$ $\Rightarrow 9 > 4\sqrt{2} + 2 \ge 4\sqrt{2} + 4 - 2y \ge 4\sqrt{2} - 4 > 1$ So $1 < x^2 + y^2 < 9$ $\Rightarrow 1 < \sqrt{x^2 + y^2} < 3$ \Rightarrow 1 < |z| < 3 and $-\sqrt{5}$ < 3 - |w| ≤ 3

$$\Rightarrow -3 < 1 - \sqrt{5} < |z| + 3 - |w| < 6$$

ଚ୍ଚାର୍ଷରେଷ