CBSE Mains- 2008

PHYSICS

1. $1/n^{th}$ part of a uniform chain of length L is hanging on a table, find the work done in pulling up the chain.

Sol:
$$W = \left(\frac{m}{n}\right) g\left(\frac{L}{2n}\right) = \frac{mg L}{2n^2}$$

Here $\frac{m}{n}$ is mass of the hanging part which is displaced by

a distance $\frac{L}{2n}$ in vertical direction.

2. Electric field in a region is given by as shown in the figure. Find the flux passing through flat part and curved part and the charge enclosed by the cylinder.

Sol: Flux passing through flat part
$$= \pi r^2 + \pi r^2 E$$

 $= 2\pi r^2 E$

Flux passing through curved part = 0

(E and surface area is perpendicular)
$$\frac{q_{\text{en}}}{q_{\text{en}}}$$

$$\phi_{\rm net} = \frac{q_{\rm en}}{\varepsilon_0}$$

$$\therefore q_{\rm en} = 2\pi r^2 E \varepsilon_0$$

3. Find the work function from the given graph.

Sol: Slope of the curve =
$$\frac{h}{e}$$

$$\therefore \quad \frac{1.62}{4 \times 10^{14}} = \frac{h}{e}$$

$$h = \frac{1.62 \times 1.9 \times 10^{-19}}{4 \times 10^{14}} = 7.7 \times 10^{-34} \text{ J-s}$$

4. A force of 20 N is acting on a block of mass 5 kg as shown in the figure. Determine the velocity of block at t = 5 sec.

Sol:
$$F_{X} = 20 \cos 45^{\circ} = \frac{20}{\sqrt{2}} N = 14.2 N$$

$$F_{Y} = 20 \sin 45^{\circ} = \frac{20}{\sqrt{2}} N$$

$$f_{s,max} = \mu N$$

$$= 0.2 (mg + F_{Y})$$

$$= 0.2 \left(50 + \frac{20}{\sqrt{2}}\right)$$

$$= 12.82 N$$

$$\therefore a = \frac{F_{X} - f_{s,max}}{m}$$

$$= \frac{14.2 - 12.8}{5}$$

 $= 0.28 \text{ m/s}^2$

5. Determine the dimensions of a in the following equation $\left(P + \frac{a}{V^2}\right)(V - b) = RT$.

Sol:
$$P \equiv \frac{a}{V^{2}}$$

$$a \equiv PV^{2}$$

$$= \frac{MLT^{-2}}{L^{2}} \times L^{6}$$

$$= [ML^{5}T^{-2}]$$

6. A charge q is distributed on a ring of radius R. What is potential on the axis at distance a from the centre. Determine the electric field by using expression of potential at that point.

Sol:
$$V = \frac{K q}{(R^2 + a^2)^{1/2}}$$

$$E = -\left(\frac{d V}{da}\right) = -Kq \times (-1/2) (R^2 + a^2)^{-3/2} \times 2a$$
$$= \frac{K qa}{(R^2 + a^2)^{3/2}}$$

7. Two dipoles having dipole moments P_1 and P_2 are separated by distance x as shown in the figure. Determine torque on P_2 due to P_1 .

$$\begin{array}{c} P_1 \\ \hline \\ X \end{array}$$

Sol: At axial point E is along axis so torque of forces acting on P, is zero

- 8. A transistor with $\beta = 69$ has collector current $i_C = 7$ mA. Find
 - (a) Emitter current
 - (b) Base current

Sol: Given
$$\beta = 69 = \frac{I_c}{i_b}$$

 $\Rightarrow i_b = 7/69 = 0.101 \text{ mA}$
 $i_e = i_b + i_c = 7 + 0.101 = 7.101 \text{ mA}$

9. A block of mass m is tied to a string of length l. Block is left when string makes an angle θ_1 with vertical. What is velocity at lowest position and tension in string when it makes an angle θ_2 with vertical $(\theta_2 < \theta_1)$.

Sol:
$$mgl(1 - \cos \theta_1) = \frac{1}{2} mv^2$$

 $\Rightarrow v = \sqrt{2gl(1 - \cos \theta_1)}$

where v is velocity at lowest point Velocity v_1 when string makes angle θ_2

$$\frac{1}{2}m{v_1}^2 + mgl(1 - \cos\theta_2) = mgl(1 - \cos\theta_1)$$

$$\Rightarrow$$
 $v_1 = \sqrt{2gl(\cos\theta_2 - \cos\theta_1)}$

$$T - mg \cos \theta_2 = \frac{m v_1^2}{l}$$

$$T = mg (3 \cos \theta_2 - 2 \cos \theta_1)$$

- 10. The amplitude of a oscillator has amplitude A_0 . After 80 oscillations its amplitudes becomes $0.8 A_0$. What will be its amplitude after 150 oscillation.
- **Sol:** Amplitude of damped oscillation at any time *t* is given by

$$A = A_0 e^{-bt}$$

Given

$$0.8 A_0 = A_0 e^{-b \times 80T}$$
 (where T is time period)

$$A = A_0 e^{-b \times 150T}$$

$$\frac{\log_e 0.8}{\log_e \frac{A}{A_0}} = \frac{80}{150}$$

$$\Rightarrow \log_e \frac{A}{A_0} = \frac{15}{8} \times \log_e \frac{4}{5}$$

Solving $A \cong 0.14 A_0$

11. C_{11} looses β^+ emission complete the equation.

Sol:
$${}^{11}_{6}\text{C} \rightarrow {}^{11}_{5}\text{B} + \beta^{+} + \nu + \text{energy}$$

12. In L-C-R circuit potential across inductor is twice that of potential across R. Find the frequency of the source.

Sol:
$$V_L = 2V_R$$

$$I\omega L = 2IR$$

$$\Rightarrow \omega = 2R/L$$

$$\therefore f = \frac{1}{2\pi} \cdot \frac{2R}{L} = \frac{R}{\pi L} \approx 1274 \text{ Hz}$$

13. Potential vs time graph of an a.c. source is shown in the figure. Find rms value.

Sol:
$$V_{rms} = \begin{bmatrix} \int_{0}^{T/4} V_0^2 dt \\ T \end{bmatrix}^{1/2} = \frac{V_0}{2}$$

14. A coil having area 0.04 m² is rotated by 90° in 0.1 sec in a external magnetic field of 25 T. Find charge flown through resistance.

Sol:
$$q = \frac{\Delta \phi}{R} = \frac{25 \times 0.04 - 0}{25} = 0.04 \text{ coulomb}$$

15. One mole of an ideal gas undergoes thermodynamic process is shown on the U-V diagram. Determine heat exchange and the change in the internal energy in cyclic process given $T_A = 500 \text{ K}$, $T_C = 300 \text{ K}$ and $\log_2 2 = 0.693$.

Sol:
$$W_{A\rightarrow B} = nRT \ln \frac{V_f}{V_i}$$

$$= 1 \times R \times 500 \ln \left(\frac{2 V_0}{V_0} \right)$$

$$= 500 R ln 2 = 319.5 RJ$$

$$\mathbf{W}_{\mathrm{C}\to\mathrm{D}} = n\mathrm{RT}\,\ln\!\left(\frac{\mathbf{V}_f}{\mathbf{V}_i}\right)$$

$$= 1 \times R \times 300 \, ln \Bigg(\frac{V_0}{2 \, V_0} \Bigg)$$

$$= -300 R ln 2 J$$

$$=-191.7 \text{ RJ}$$

$$\Delta Q = \Delta U + W$$

$$= 0 + (319.5R - 191.7 R)$$

$$= 127.8 R J$$

16. Two particles are moving with velocities 10 m/sec and 5 m/sec. Their acceleration are 2 m/sec² and 5 m/sec² respectively. They travel equal distances in given time. Determine that distance travelled by the particles.

$$V_1 = 10 \text{ m/sec}$$
 $V_2 = 5 \text{ m/sec}$

Sol:
$$10t + \frac{1}{2} \times 2t^2 = 5t + \frac{1}{2} \times (5)t^2$$

$$\Rightarrow 5t = \frac{3}{2}t^2$$

$$\Rightarrow t = \frac{10}{3} \sec$$

$$\therefore S = 10 \times \frac{10}{3} + \frac{1}{2} \times \frac{2 \times 100}{3} = \frac{200}{3} m$$

17. A particle falls 20 m when dropped and acquires velocity of 5 m/sec. What is work done by air.

Sol:
$$W_{air} + W_g = K_f - K_i$$

$$W_{air} + mg \times 20 = \frac{1}{2} m \times 5^2 - 0$$

$$\Rightarrow$$
 $W_{air} = \frac{25}{2} \text{ m} - 200 \text{ m} = -187.5 \text{ m}$

if
$$m = 1 \text{ kg}$$

$$\therefore$$
 W_{air} = -187.5 J

છાલજા