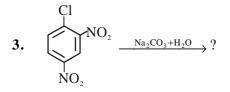
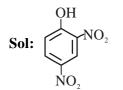

CBSE Mains- 2008 CHEMISTRY





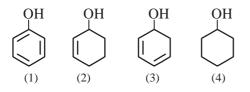
because ring (2) is activated due to delocalisation of lone pair of e⁻s of O; and NO₂^{\oplus} preferably goes to para position because O-position is sterically hindered.

Sol: Order of electrophilicity is 3 > 2 > 1 > 4

due to two $-NO_2$ gps present at o-and p- position, Cl becomes more reactive towards nucleophilic substitution.

4.
$$Ph \\ H \\ C = C \\ CH_3 \\ HBr \\ ?$$

Sol: $Ph = C_6H_5$


$$\overset{\bigcirc}{\underset{H}{\longrightarrow}} C \stackrel{\frown}{=} C \overset{H}{\underset{CH_3}{\longrightarrow}} \overset{H^{\oplus}}{\underset{H}{\longrightarrow}} \overset{\bigoplus}{\underset{C}{\longrightarrow}} C \stackrel{\oplus}{\underset{CH_2 - CH_2 - CH_3}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} C \stackrel{H}{\underset{CH_2 - CH_2 - CH_3}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} C \stackrel{H}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} C \stackrel{H}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} C \stackrel{H}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{H}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}} \overset{Br}{\underset{C}{\longrightarrow}}$$

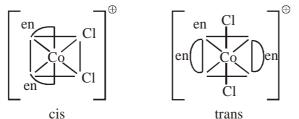
- 5. Why mobility of Li^{\oplus} is less than that of Cs^{\oplus} ion.
- **Sol:** Mobility of Li^{\oplus} is less than that of Cs^{\oplus} due to greater degree of hydration of Li^{\oplus} ion.
- 6. Why H_2O is more viscous than HF.
- Sol: H_2O is more viscous than HF due to more number of H-bonds per molecule of H_2O and it is highly associated *i.e.* $(H_2O)_n$.
- 7. Give the products when glucose is treated with Br_2 water and HNO_3 .

Sol:
$$(CHO)_{4} \xrightarrow{Br_{2} \text{ water}} (CHOH)_{4}$$

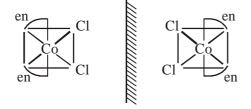
 $(CHOH)_{4} \xrightarrow{Br_{2} \text{ water}} (CHOH)_{4}$
 $(CHOH)_{4}$
 $(C$

$$\begin{array}{ccc} \text{CHO} & \text{COOH} \\ | & | \\ (\text{CHOH})_4 & \xrightarrow{\text{HNO}_3} & (\text{CHOH})_4 \\ | & | \\ \text{CH}_2 - \text{OH} & & \text{COOH} \\ \text{Glucose} & & \text{Saccharic acid} \end{array}$$

8. Arrange the following in decreasing order of dehydration



- **Sol:** Order of dehydration is 3 > 2 > 4 > 1
- 9. Give the unit cell structure of diamond.
- **Sol:** In Diamond structure, C forms FCC or CCP and also C is present at half of the tetrahedral voids (*i.e.* alternate tetrahedral void); Diamond structure is similar to ZnS type structure.


10. Out of $CH \equiv C^-$ and $CH_2 = CH^-$ which is more basic.

Sol.: HC = C:⁻ < CH₂ = C \ddot{H}^- ; *i.e.*, CH₂ = C \ddot{H}^- is stronger base than CH = C:⁻.

- 11. Name the polymer formed when adipic acid and hexamethylene diamine condense?
- **Sol:** Adipic acid *i.e.* HOOC $(CH_2)_4COOH$ and hexamethylene diamine *i.e.* $NH_2(CH_2)_6NH_2$ form a condensation (polyamide) polymer known as Nylon-66.
- **12.** Give the stereoisomers of $[Co(en)_2Cl_2]^{\oplus}$
- **Sol:** geometrical isomers

trans form doesnot show optical isomerism while cis form shows i.e.

13. Copper crystallises in fcc structure having edge length 361.4 pm. calculate its density?

Sol:
$$z = 4$$

At. wt.
$$= 63.5$$

$$d = \frac{z \times M}{a^3 \times N_A}$$
$$= \frac{4 \times 63.5}{(361.4 \times 10^{-10})^3 \times 6.023 \times 10^{23}} = 8.9 \text{ g/cc}$$

- 14. Find the vont hoff's factor *i* and dissociation constant for KI solution : Given $\Delta T_f = -0.201$ and molality is 0.1 and K_f is 1.86° mol/kg
- **Sol:** $\Delta T_{f} = K_{f} \cdot m = 1.86 \times 0.1 = 0.186$ (calculated)

 $i = \frac{\text{observed colligative property}}{\text{calculated colligative property}}$

$$i = \frac{0.201}{0.186} = 1.08$$

 $i = 1 + \alpha = 1.08$
 $\alpha = 0.08$ *i.e.*, 8%

15. K_1 and K_2 are given at 17°C and 27°C, find out expression for Ea (Activation energy)

Sol:
$$\log_{10} \frac{K_2}{K_1} = \frac{Ea}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$