- 1. Equal volumes of three acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the H⁺ ion concentration in the mixture?
 - (1) $1.11 \times 10^{-4} \text{ M}$ (2) $3.7 \times 10^{-4} \text{ M}$
 - (3) 3.7×10^{-3} M (4) 1.11×10^{-3} M

Sol: Ans [4]

$$[\mathrm{H^+}] = \frac{10^{-3} \mathrm{V} + 10^{-4} \mathrm{V} + 10^{-5} \mathrm{V}}{3 \mathrm{V}} = 10^{-5}(10^2 + 10 + 1) = 1.11 \times 10^{-3} \mathrm{M}$$

2. Acetophenone when reacted with a base, C_2H_5ONa , yields a stable compound which has the structure:

Sol: Ans [1]

- **3.** The angular shape of ozone molecule (O_3) consists of
 - (1) 1 sigma and 2 pi bonds
 - (2) 2 sigma and 2 pi bonds
 - (3) 1 sigma and 1 pi bonds
 - (4) 2 sigma and 1 pi bonds

Sol: Ans [4]

4. On the basis of the following E° values, the strongest oxidizing agent is:

 $[Fe(CN)_{6}]^{4-} \rightarrow [Fe(CN)_{6}]^{3-} + e^{-1}; \qquad E^{\circ} = -0.35 \text{ V}$ $Fe^{2+} \rightarrow Fe^{3+} + e^{-1}; \qquad E^{\circ} = -0.77 \text{ V}$ (1) $[Fe(CN)_{6}]^{4-}$ (2) Fe^{2+} (3) Fe^{3+} (4) $[Fe(CN)_{6}]^{3-}$

Sol: Ans [3]

Lesser the oxidation potential better the oxidising agent. Better the reduction potential poorer the oxidising agent.

- 5. Green Chemistry means such reactions which
 - (1) produce colour during reactions
 - (2) reduce the use and production of hazardous chemicals
 - (3) are related to the depletion of ozone layer
 - (4) study the reactions in plants

Sol: Ans [2]

Factual

6. Which of the following are not state functions?

(I)	q + w	(II)	q	(III)) w	(IV) H – TS
(1)	(I) and (IV)	(2)	(II), (III) and (IV)	(3)	(I), (II) and (III)	(4)	(II) and (III)

Sol: Ans [4]

Factual

7. If uncertainty in position and momentum are equal, then uncertainty in velocity is

(1)
$$\frac{1}{2m}\sqrt{\frac{h}{\pi}}$$
 (2) $\sqrt{\frac{h}{2\pi}}$ (3) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$ (4) $\sqrt{\frac{h}{\pi}}$

Sol: Ans [1]

$$x^2 = \frac{h}{4\pi}$$
 \therefore $x = \frac{h}{4\pi} \& x = m\Delta V$

$$\therefore \quad \Delta \mathbf{V} = \frac{1}{m} \sqrt{\frac{h}{4\pi}} = \frac{1}{2m} \sqrt{\frac{h}{\pi}}$$

8. The correct order of decreasing second ionisation enthalpy of Ti (22), V(23), Cr (24) and Mn (25) is

$$(1) \quad Cr > Mn > V > Ti \quad (2) \quad V > Mn > Cr > Ti \quad (3) \quad Mn > Cr > Ti > V \quad (4) \quad Ti > V > Cr > Mn$$

Sol: Ans [1]

Factual

- 9. The relative reactivities of acyl compounds towards nucleophilic substitution are in the order of
 - (1) Acyl chloride > Acid anhydride > Ester > Amide
 - (2) Ester > Acyl chloride > Amide > Acid anhydride
 - (3) Acid anhydride > Amide > Ester > Acyl chloride
 - (4) Acyl chloride > Ester > Acid anhydride > Amide

Sol: Ans [1]

Between ester and acid anhydride, anhydride is more reactive towards nucleophilic substitution as **leaving group RO**⁻ in ester is stronger base than RCOO⁻.

- **10.** Kohlrausch's law states that at
 - finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
 - (2) infinite dilution each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte.
 - (3) infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.
 - (4) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.

Sol: Ans [4]

Factual

11. Which one of the following is most reactive towards electrophilic attack?

Sol: Ans [3]

-OH is a strong activating group.

12. Volume occupied by one molecule of water (density = 1 g cm^{-3}) is

(1) $9.0 \times 10^{-23} \text{ cm}^3$ (2) $6.023 \times 10^{-23} \text{ cm}^3$ (3) $3.0 \times 10^{-23} \text{ cm}^3$ (4) $5.5 \times 10^{-23} \text{ cm}^3$

Sol: Ans [3]

Volume occupied by one water molecule
$$= \frac{18}{6.023 \times 10^{23}}$$
 cm³
 $\simeq 3 \times 10^{-23}$ cm³

- 13. Which of the following complexes exhibits the highest paramagnetic behaviour?
 - (1) $[V (gly)_2 (OH)_2 (NH_3)_2]^+$ (2) $[Fe (en) (bpy) (NH_3)_2]^{2+1}$
 - (3) $[Co(OX)_2(OH)_2]^-$ (4) $[Ti (NH_3)_6]^{3+}$

Where gly = glycine, en = enthylenediamine and bpy = bipyriddyl moities

(At. nos. Ti = 22, V = 23, Fe = 26, Co = 27)

Sol: Ans [3]

- $x 4 2 = -1 \qquad \therefore \qquad x = +5$
- \Rightarrow Co⁺⁵ : 3d⁴
- \Rightarrow 4*e*⁻(s) are unpaired
- 14. If a gas expands at constant temperature, it indicates that
 - (1) kinetic energy of molecules decreases (2) pressure of the gas increases
 - (3) kinetic energy of molecules remains the same (4) number of the molecules of gas increases

Sol: Ans [3]

KE \propto T, here the process is isothermal.

15. For the gas phase reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ which of the following conditions are correct?

- (1) $\Delta H = O$ and $\Delta S < O$ (2) $\Delta H > O$ and $\Delta S > O$
- (3) $\Delta H < O$ and $\Delta S < O$ (4) $\Delta H > O$ and $\Delta S < O$

Sol: Ans [4]

As process is endothermic end due to breaking randomness will increases.

16. In a S_N^2 substitution reaction of the type $R - Br + Cl^- \xrightarrow{DMF} R - Cl + Br^-$, which ne of the following has the highest relative rate?

(1)
$$CH_3 - CH_2 - CH_2Br$$
 (2) $CH_3 - CH - CH_2Br$

(3)
$$CH_3 = C - CH_2Br$$

 $H_3 = C - CH_2Br$
 $H_3 = C - CH_2Br$
 $CH_3 = CH_3$
(4) CH_3CH_2Br

Sol: Ans [4]

As formation of $CH_3CH_2^+$ from CH_3CH_2Br will be most infavourable.

- 17. Number of moles of MnO_4^- required to oxidize one mole of ferrous oxalate completely in acidic medium will be
 - (1) 0.6 moles (2) 0.4 moles (3) 7.5 moles (4) 0.2 moles
- Sol: Ans [1]

 $\begin{array}{l} \operatorname{MnO}_{4}^{-} + \operatorname{FeC}_{2}\operatorname{O}_{4} \xrightarrow{\mathrm{H}^{+}} \operatorname{Mn}^{2+} + \operatorname{Fe}^{3+} + \operatorname{C}^{4+} \\ \Rightarrow 5 \text{ mols of } \operatorname{FeC}_{2}\operatorname{O}_{4} &\equiv 3 \text{ moles of } \operatorname{KMnO}_{4} \\ \therefore 1 \text{ mole} &\equiv 3/5 \equiv 0.6 \text{ mole} \end{array}$

- **18.** If the concentration of OH⁻ ions in the reaction $Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3OH^-(aq)$ is decreased by (1/4) times, then equilibrium concentration of Fe³⁺ will increase by
 - (1) 8 times (2) 16 times (3) 64 times (4) 4 times

Sol: Ans [3]

$$K_{C} = x(3x)^{3} = x' \left(\frac{3}{4}x\right)^{3}$$
$$\Rightarrow x' = 64x$$

19. The sequence of ionic mobility in aqueous solution is

- (1) $K^+ > Na^+ > Rb^+ > Cs^+$ (2) $Cs^+ > Rb^+ > K^+ > Na^+$
- (3) $Rb^+ > K^+ > Cs^+ > Na^+$ (4) $Na^+ > K^+ > Rb^+ > Cs^+$

Sol: Ans [2]

Due to greater charge density smaller cations hydrate heavily giving larger sized hydrated ions.

: Mobility order becomes as

$$Cs^{+}_{(aq.)} < Rb^{+}_{(aq.)} < K^{+}_{(aq.)} < Na^{+}_{(aq.)}$$

- **20.** The alkali metals form salt-like hydrides by the direct synthesis at elevated temperature. The thermal stability of these hydrides decreases in which of the following orders?
 - (1) CsH > RbH > KH > NaH > LiH
 - (2) KH > NaH > LiH > CsH > RbH
 - (3) NaH > LiH > KH > RbH > CsH
 - (4) LiH > NaH > KH > RbH > CsH

Sol: Ans [4]

Factual

- **21.** Which one of the following arrangements does not give the correct picture of the trends indicated against it?
 - (1) $F_2 > Cl_2 > Br_2 > I_2$: Oxidizing power (2) $F_2 > Cl_2 > Br_2 > I_2$: Electron gain enthalpy
 - (3) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy (4) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity

Sol: Ans [2, 3]

Magnitude of " Δ_{eg} H" for Cl is more than F due to greater screening in F

Due to smaller size of F and presence of ep of e⁻, F-F bond is weaker than Cl-Cl bond.

- 22. Standard free energies of formation (in kJ/mol) at 298 K are -237.2, -394.4 and -8.2 for H₂O(*l*), CO₂(g) and pentane (g), respectively. The value of E°_{cell} for the pentane-oxygen fuel cell is
 - (1) 1.968 V (2) 2.0968 V (3) 1.0968 V (4) 0.0968 V

Sol: Ans [3]

C₅H_{12(g)} + 8O_{2(g)} → 5CO_{2(g)} + 6H₂O_(l)
Δ*r*G⁻_(298K) = 5(-394.4) + 6(-237.2) - (-8.2) = -3387.2 × 10³ J/mole
Δ*r*G⁻ = *n*FE[°]_{cell}
⇒
$$E^{°}_{cell} = \frac{+3387.2 \times 10^{3}}{32 \times 96500} = 1.0968 V$$

- 23. $H_{3}C CH CH = CH_{2} + HBr \rightarrow A$; A (predominantly) is | CH_{2}
 - (1) $CH_3 CH CH_2 CH_2Br$ \downarrow CH_3 (2) $CH_3 - C - CH_2CH_3$ \downarrow CH_3 (3) $CH_3 - C - CH_2CH_3$

(3)
$$CH_3 - CH - CH_3$$

 $| \\ Br \\ CH_3$
(4) $CH_3 - CH_3 - CH_3$
 $| \\ CH_3 \\ Br$

Sol: Ans [2]

$$CH_{3} - CH - CH = CH_{2} + HBr \longrightarrow CH_{3} - CH - CH_{3} + HBr \longrightarrow CH_{3} - CH - CH_{3} + Br$$

24. Base strength of

(a) $H_3C^-CH_2$ (b) $H_2C = ^-CH$ (c) $H - C \equiv C^$ is in the order of (1) (b) > (a) > (c) (2) (c) > (b) > (a) (3) (a) > (c) > (b) (4) (a) > (b) > (c)

Sol: Ans [4]

Conjugate base of stronger acid is always weaker so $HC \equiv C^-$ will be weakest base here.

- 25. Which of the following statements is *not* correct?
 - (1) The fraction of the total volume occupied by the atoms in a primitive cell is 0.48
 - (2) Molecular solids are generally volatile
 - (3) The number of carbon atoms in an unit cell of Diamond is 4
 - (4) The number of Bravais lattices in which a crystal can be categorized is 14

Sol: Ans [1]

Packing Fraction of primitive cubic unit cell is 0.52.

- **26.** If 'a' stands for the edge length of the cubic systems: simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively,
 - (1) $\frac{1}{2} a : \frac{\sqrt{3}}{4} a : \frac{1}{2\sqrt{2}} a$ (2) $\frac{1}{2} a : \sqrt{3} a : \frac{1}{\sqrt{2}} a$ (3) $\frac{1}{2} a : \frac{\sqrt{3}}{2} a : \frac{\sqrt{2}}{2} a$ (4) $1 a : \sqrt{3} a : \sqrt{2} a$

Sol: Ans [1]

sc :
$$r = \frac{a}{2}$$
. fcc : $r = \frac{a}{2\sqrt{2}}$, bcc : $r = \frac{4\sqrt{3}}{4}$

- 27. The rate constants k_1 and k_2 for two different reactions are $10^{16} e^{-2000/T}$ and $(10^{15} e^{-1000/T}, respectively)$. The temperature at which $k_1 = k_2$ is
 - (1) 1000 K (2) $\frac{2000}{2.303}$ K (3) 2000 K (4) $\frac{1000}{2.303}$ K

Sol: Ans [4]

 $k_{1} = 10^{16} e^{-2000/T}, \qquad k_{2} = 10^{15} e^{-2000/T} = 10^{15} \cdot e^{-1000/T}.$ If $k_{1} = k_{2}$ then $10^{16} \cdot e^{-2000/T} = 10^{15} \cdot e^{-1000/T}.$ $\Rightarrow 10^{16} \cdot e^{-2000/T} = e^{-1000/T}$ $\Rightarrow \ln 10 - \frac{2000}{T} = -\frac{1000}{T} \therefore \ln 10 = \frac{2000}{T} - \frac{1000}{T} = \frac{1000}{T}$ $\therefore T = \frac{1000}{\ln 10} = \frac{1000}{2.303}$

28.	What volume of oxygen gas (O_2) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C_3H_2) measured under the same conditions?						
	(1) 7 L	(2)	6 L	(3)	5 L	(4)	10 L
Sol:	Ans [3]						
	$C_3H_8 + 5O_2 \longrightarrow 3CO_2$	$_{2} + 41$	H ₂ O				
	1 vol $C_3H_8 \equiv 5$ volumes	of O	$_2 \Rightarrow 1 L \equiv 5 L$				
29.	The correct order of increasing bond angles in the following triatomic species is						
	(1) $NO_2^- < NO_2^+ < NO_2^+$	O_2		(2)	$\mathrm{NO}_2^- < \mathrm{NO}_2 < \mathrm{NO}_2$	2+	
	(3) $NO_2^+ < NO_2 < NO_2^+$) ₂ ⁻		(4)	$NO_2^+ < NO_2^- < NO_2^-$) ₂	
Sol:	Ans [2]						
	$NO_2^{-}(120^{\circ}) < NO_2(bent)$	t) < N	$\mathrm{NO}_2^{\oplus}(180^\circ)$				
30.	How many stereoisomers does this molecule have? $CH_3CH = CHCH_2CHBrCH_3$						
	(1) 4	(2)	6	(3)	8	(4)	2
Sol:	Ans [1]						
	Number of geometrical	isome	$\operatorname{prs} = 2$				
	number of chiral carbon	s =1 =	\Rightarrow optical isomer = 2				
31.	Equimolar solutions of the	ne foll	owing were prepared	in wa	ater separately. Which	n one	of the solutions will
	record the highest pH?						~ ~
Cale	(1) SrCl_2	(2)	BaCl ₂	(3)	MgCl ₂	(4)	CaCl ₂
501:	Ans [2] BaCl \longrightarrow Ba ²⁺ + 2Cl	_					
	with water up to some ex	xtent	Ba ²⁺ will form Ba(O)	H), th	nat is highly soluble o	iving	n highest nH
22	Foun distancia anazias a				waraa Which of th	,- , <u>-</u>	,
32.	order of their increasing	bond	order?	n seg	uences. which of th	ese p	bresents the <i>correct</i>
	(1) $O_2^- < NO < C_2^{2-} <$	He ₂ ⁺		(2)	$NO < C_2^{2-} < O_2^{-} < C_2^{-}$	He ₂ ⁺	
	(3) $C_2^{2-} < He_2^+ < NO$	$< O_2^{-1}$		(4)	$He_{2}^{+} < O_{2}^{-} < NO <$	C_{2}^{2}	
Sol:	Ans [4]						
	$\text{He}_2^+(0.5) < \text{O}_2^-(1.5) <$	NO ($(2.5) < C_2^{2-}(3)$				
33.	33. Percentage of free space in a body centred cubic unit cell is						
	(1) 30%	(2)	32%	(3)	34%	(4)	28%
Sol:	Ans [2]						

Packing friction of bcc = 0.68.

34. With which one of the following elements silicon should be doped so as to give p-type of semiconductor?

- (1) Germanium (2) Arsenic
- (3) Selenium (4) Boron

Sol: Ans [4]

Boron has 3 valence electrons.

- **35.** An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave C, 38.71% and H, 9.67%. The empirical formula of the compound would be
 - (1) $CH_{3}O$ (2) $CH_{2}O$ (3) CHO (4) $CH_{4}O$
- Sol: Ans [1]

$$\frac{38.71}{12} = 3.226 = \frac{3.226}{3.226} = 1$$

$$\frac{9.67}{1} = 9.67$$

C =
$$\frac{38.71}{12} = 3.226 = \frac{3.226}{3.226} = 1$$

H =
$$\frac{9.67}{1} = 9.67$$
 = $\frac{9.67}{3.226} \approx 3$

$$O = \frac{51.72}{16} = 3.23 \quad \frac{3.23}{3.226} \approx 1$$

hence empirical formula $isCH_3O$

- **36.** The measurement of the electron position is associated with an uncertainty in momentum, which is equal to 1×10^{-18} g cms⁻¹. The uncertainty in electron velocity is, (mass of an electron is 9×10^{-28} g)
 - (1) $1 \times 10^9 \text{ cms}^{-1}$ (2) $1 \times 10^6 \text{ cms}^{-1}$
 - (3) $1 \times 10^5 \text{ cms}^{-1}$ (4) $1 \times 10^{11} \text{ cms}^{-1}$

Sol: Ans [1]

 $m\Delta v = 1 \times 10^{-18} \text{ gm cms}^{-1}$

$$\Delta v = \frac{1 \times 10^{-18} \text{ gm cms}^{-1}}{9 \times 10^{-28} \text{ gm}}$$
$$= 0.1 \times 10^{10} \text{ cm s}^{-1}$$
$$= 109 \text{ cms}^{-1}$$

- **37.** How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl?
 - (1) 0.044 (2) 0.333 (3) 0.011 (4) 0.029
- Sol: Ans [4]

 $PbO + 2HCl \longrightarrow PbCl_2 + H_2O$

wt 6.5 3.2 moles. $\frac{6.5}{222}$ $\frac{3.2}{36.5}$ 0.0281 0.0876

so PbO is limiting reagent

moles aq $PbCl_2 = 0.029$

38. In a reaction of aniline a coloured product C was obtained.

$$\underbrace{\bigcirc}_{\mathbf{A}} \overset{\mathrm{NH}_2}{\longrightarrow} \overset{\mathrm{NaNO}_2}{\operatorname{HCl}} \mathbf{B} \xrightarrow{\bigodot}_{\mathrm{Cold}} \overset{\mathrm{CH}_3}{\longrightarrow} \mathbf{C}; \text{ The structure of C would be}$$

OII

(1)
$$\langle \bigcirc -N = N - CH_2 - N \langle \bigcirc \\ CH_3 \rangle$$

(2) $\bigcirc -N = N - \bigcirc \\ \bigcirc \\ -N = N - \bigcirc \\ \bigcirc \\ -N \langle CH_3 \rangle$
(3) $\bigcirc -NH - NH \langle \bigcirc \\ -N \langle CH_3 \rangle$
(4) $\langle \bigcirc -N = N - \bigcirc \\ \bigcirc \\ -N \langle CH_3 \rangle$

Sol: Ans [4]

- **39.** A strong base can abstract an α -hydrogen from
 - (1) Alkene (2) Amine (3) Ketone (4) Alkane
- Sol: Ans [3]

 α -hydrogen of ketone are acidic due to resonance stabilisation aq. carbanion formed.

40. The stability of carbanions in the following

(a)
$$RC = \overset{\ominus}{C}$$
 (b) $\overset{\ominus}{\bigvee}$ (c) $R_2C = \overset{\ominus}{C}H$ (d) $R_3C - \overset{\ominus}{C}H_2$

is in the order of

(1) (a) > (b) > (c) > (d) (2) (b) > (c) > (d) > (a) (3) (d) > (b) > (c) > (a) (4) (a) > (c) > (b) > (d) > (b) > (c) >

Sol: Ans [2]

 $\mathbf{RC} = \overset{\Theta}{\mathbf{C}}$ due to incompleted octet will be least stable, while \mathbf{O} and \mathbf{C} max stable.

- **41.** Bond dissociation enthalpy of H₂, Cl₂ and HCl are 434, 242 and 431 kJ mol⁻¹ respectively. Enthalpy of formation of HCl is
 - (1) 93 kJ mol^{-1} (2) -245 kJ mol^{-1} (3) -93 kJ mol^{-1} (4) 245 kJ mol^{-1}

Sol: Ans [3]

$$\Delta H_{\rm f} (\rm HCl) = \frac{434 + 242 - (2 \times 431)}{2} = -93 \text{ kJ mol}^{-1}$$

42. The dissociation equilibrium of a gas AB_2 can be represented as

 $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$

The degree of dissociation is 'x' and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_p and total pressure P is

(1)
$$(2K_p/P)$$
 (2) $(2K_p/P)^{1/3}$ (3) $(2K_p/P)^{1/2}$ (4) (K_p/P)

Sol: Ans [2]

$$2AB_{2}(g) \rightleftharpoons 2AB(g) + B_{2}(g)$$

t = 0 1 0 0
t = eq 1 - x x x/2

$$Kp = \frac{\left(\frac{x}{1+x/2} \times P\right) \left(\frac{x/2}{1+x/2} \times P\right)}{\left(\frac{1-x}{1+x/2} \times P\right)^2} = \frac{x^2 \times x \times 1}{2 \times (1-x) \times (1+x/2)} \times P$$

:: *x* <<< 1

$$Kp = \frac{x^3 \times P}{2}$$
$$x = \left(\frac{2 Kp}{P}\right)^{1/3}$$

43. Which one of the following is an amine hormone?

(1) Thyroxine (2) Oxypurin (3) Insulin (4) Progesterone

Sol: Ans [1]

Factual

- 44. Which one of the following statements is not true?
 - (1) In vulcanization, the formation of sulphur bridges between different chains make rubber harder and stronger
 - (2) Natural rubber has the *trans*-configuration at every double bond
 - (3) Bona-S is a copolymer of butadiene and styrene
 - (4) Natural rubber is a 1, 4-polymer of isoprene

Sol: Ans [2]

Natural rubber is cis-isomer

45. In the hydrocarbon

 $CH_3 - CH = CH - CH_2 - C \equiv CH$ 6 5 4 3 2 1

The state of hybridization of carbons 1, 3 and 5 are in the following sequence:

(1) sp^2 , sp, sp^3 (2) sp, sp^3 , sp^2 (3) sp, sp^2 , sp^3 (4) sp^3 , sp^2 , sp

Sol: Ans [2]

sp, sp³, sp² for triple, single and double bond respectively.

46. The values of Kp_1 and Kp_2 for the reactions

$$X \rightleftharpoons Y + Z \qquad \dots \dots (1)$$
$$A \rightleftharpoons 2B \qquad \dots \dots (2)$$

are in ratio of 9 : 1. If degree of dissociation of X and A be equal, then total pressure at equilibrium (1) and (2) are in the ratio:

 $(1) \quad 3:1 \qquad (2) \quad 1:9 \qquad (3) \quad 36:1 \qquad (4) \quad 1:1$

Sol: Ans [3]

$$X \rightleftharpoons Y + Z$$

$$1 \quad 0 \quad 0$$

$$1 - x \quad x \quad x$$

$$\mathbf{K}\mathbf{p}_{1} = \frac{\left(\frac{x}{1+x} \times \mathbf{P}\right)^{2}}{\left(\frac{1-x}{1+x} \times \mathbf{P}\right)} = \frac{x^{2}}{(1+x)(1-x)} \times \mathbf{P}_{1}$$

$$A \rightleftharpoons 2B$$

$$1 \qquad 0$$

$$1-x' \qquad 2x'$$

$$Kp_{2} = \frac{\left(\frac{2x'}{1+x'} \times P\right)^{2}}{\left(\frac{1-x'}{1+x'} \times P\right)} = \frac{4x'^{2} \times P_{2}}{(1+x')(1-x')}$$
$$\frac{K_{P_{1}}}{K_{P_{2}}} = \frac{9}{1} = \frac{x^{2}}{4x^{2}} \times \frac{P_{1}}{P_{2}}$$
$$\frac{P_{1}}{P_{2}} = \frac{4x^{2} \times 9}{x^{2}} = 36:1$$

- 47. In DNA the complimentary bases are
 - (1) Adenine and thymine; guanine and cytosine (2) Adenine and thymine; guanine and uracil
 - (3) Adenine and guanine; thymine and cytosine (4) Uracil and adenine; cytosine and guanine

Sol: Ans [1]

In DNA thymine is found in place at uracil found in RNA.

48. The bromination of acetone that occurs in acid solution is represented by this equation.

 $CH_3COCH_3(aq) + Br_2(aq) \rightarrow CH_3COCH_2Br(aq) + H^+(a) + Br^-(aq)$

These kinetic data were obtained for given reaction concentrations.

Initial Concentrations, M

[CH ₃ COCH ₃]	[Br ₂]	$[H^+]$
0.30	0.05	0.05
0.30	0.10	0.05
0.30	0.10	0.10
0.40	0.05	0.20

Initial Rate, disappearance of Br₂, Ms⁻¹

$$5.7 \times 10^{-5}$$

 5.7×10^{-5}
 1.2×10^{-4}
 3.1×10^{-4}

Based on these data, the rate equation is:

(1) Rate = $k[CH_3COCH_3][H^+]$

(2) Rate = $k[CH=COCH_3][Br_2]$

(3) Rate = $k[CH_3COCH_3][Br_2][H^+]^2$

(2) Rule = $\kappa[eff=eoeff_3][bf_2]$

(4) Rate = $k[CH_3COCH_3][Br_2][H^+]$

Sol: Ans [1]

From set (1) and (2) if cncentration of Br_2 is changed rate is not changed so $[Br_2]$ should not be in rate law.

49. The value of equilibrium constant of the reaction

HI (g)
$$\longrightarrow \frac{1}{2}$$
 H₂(g) + $\frac{1}{2}$ I₂ is 8.0

The equilibrium constant of the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ will be

(1)
$$\frac{1}{16}$$
 (2) $\frac{1}{64}$ (3) 16 (4) $\frac{1}{8}$

Sol: Ans [2]

$$\operatorname{Kc}' = \frac{1}{\left(\operatorname{K}_{c}\right)^{2}} = \frac{1}{\left(8\right)^{2}} = \frac{1}{64}.$$

50. In which of the following coordination entities the magnitude of ΔO (CFSE in octahedral field) will be maximum?

(1)
$$[Co(H_2O)_6]^{3+}$$
 (2) $[Co(NH_3)_6]^{3+}$ (3) $[Co(CN)_6]^{3-}$ (4) $[Co(C_2O_4)_3]^{3-}$

Sol: Ans [3]

Stronger the ligand high is the CFSE.

Manage