CBSE - 2008 (Pre)

1. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
(1) $1.11 \times 10^{-4} \mathrm{M}$
(2) $3.7 \times 10^{-4} \mathrm{M}$
(3) $3.7 \times 10^{-3} \mathrm{M}$
(4) $1.11 \times 10^{-3} \mathrm{M}$

Sol: Ans [4]
$\left[\mathrm{H}^{+}\right]=\frac{10^{-3} \mathrm{~V}+10^{-4} \mathrm{~V}+10^{-5} \mathrm{~V}}{3 \mathrm{~V}}=10^{-5}\left(10^{2}+10+1\right)=1.11 \times 10^{-3} \mathrm{M}$
2. Acetophenone when reacted with a base, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$, yields a stable compound which has the structure:
(1)

(2)

(3)

(4)

Sol: Ans [1]

3. The angular shape of ozone molecule $\left(\mathrm{O}_{3}\right)$ consists of
(1) 1 sigma and 2 pi bonds
(2) 2 sigma and 2 pi bonds
(3) 1 sigma and 1 pi bonds
(4) 2 sigma and 1 pi bonds

Sol: Ans [4]

4. On the basis of the following E° values, the strongest oxidizing agent is:
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-1} ; \quad \mathrm{E}^{\circ}=-0.35 \mathrm{~V}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-1} ; \quad \mathrm{E}^{\circ}=-0.77 \mathrm{~V}$
(1) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(2) Fe^{2+}
(3) Fe^{3+}
(4) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Sol: Ans [3]
Lesser the oxidation potential better the oxidising agent.
Better the reduction potential poorer the oxidising agent.
5. Green Chemistry means such reactions which
(1) produce colour during reactions
(2) reduce the use and production of hazardous chemicals
(3) are related to the depletion of ozone layer
(4) study the reactions in plants

Sol: Ans [2]
Factual
6. Which of the following are not state functions?
(I) $q+w$
(II) q
(III) w
(IV) H - TS
(1) (I) and (IV)
(2) (II), (III) and (IV)
(3) (I), (II) and (III)
(4) (II) and (III)

Sol: Ans [4]
Factual
7. If uncertainty in position and momentum are equal, then uncertainty in velocity is
(1) $\frac{1}{2 m} \sqrt{\frac{h}{\pi}}$
(2) $\sqrt{\frac{h}{2 \pi}}$
(3) $\frac{1}{m} \sqrt{\frac{h}{\pi}}$
(4) $\sqrt{\frac{h}{\pi}}$

Sol: Ans [1]

$$
\begin{aligned}
& x^{2}=\frac{h}{4 \pi} \quad \therefore \quad x=\frac{h}{4 \pi} \& x=m \Delta \mathrm{~V} \\
\therefore & \Delta \mathrm{~V}=\frac{1}{m} \sqrt{\frac{h}{4 \pi}}=\frac{1}{2 m} \sqrt{\frac{h}{\pi}}
\end{aligned}
$$

8. The correct order of decreasing second ionisation enthalpy of Ti (22), $\mathrm{V}(23), \mathrm{Cr}(24)$ and $\mathrm{Mn}(25)$ is
(1) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{V}>\mathrm{Ti}$
(2) $\mathrm{V}>\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}$
(3) $\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}>\mathrm{V}$
(4) $\mathrm{Ti}>\mathrm{V}>\mathrm{Cr}>\mathrm{Mn}$

Sol: Ans [1]
Factual
9. The relative reactivities of acyl compounds towards nucleophilic substitution are in the order of
(1) Acyl chloride > Acid anhydride > Ester > Amide
(2) Ester > Acyl chloride > Amide > Acid anhydride
(3) Acid anhydride > Amide > Ester > Acyl chloride
(4) Acyl chloride > Ester > Acid anhydride > Amide

Sol: Ans [1]

Between ester and acid anhydride, anhydride is more reactive towards nucleophilic substitution as leaving group RO^{-}in ester is stronger base than RCOO^{-}.
10. Kohlrausch's law states that at
(1) finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
(2) infinite dilution each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte.
(3) infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.
(4) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.

Sol: Ans [4]

Factual
11. Which one of the following is most reactive towards electrophilic attack?
(1)

(2)

(3)

(4)

Sol: Ans [3]

-OH is a strong activating group.
12. Volume occupied by one molecule of water (density $=1 \mathrm{~g} \mathrm{~cm}^{-3}$) is
(1) $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
(2) $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
(3) $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
(4) $5.5 \times 10^{-23} \mathrm{~cm}^{3}$

Sol: Ans [3]
Volume occupied by one water molecule $=\frac{18}{6.023 \times 10^{23}} \mathrm{~cm}^{3}$

$$
\simeq 3 \times 10^{-23} \mathrm{~cm}^{3}
$$

13. Which of the following complexes exhibits the highest paramagnetic behaviour?
(1) $\left[\mathrm{V}(\mathrm{gly})_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
(2) $\left[\mathrm{Fe} \text { (en) (bpy) }\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
(3) $\left[\mathrm{Co}(\mathrm{OX})_{2}(\mathrm{OH})_{2}\right]^{-}$
(4) $\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Where gly = glycine, en = enthylenediamine and bpy = bipyriddyl moities
(At. nos. $\mathrm{Ti}=22, \mathrm{~V}=23, \mathrm{Fe}=26, \mathrm{Co}=27$)
Sol: Ans [3]

$$
x-4-2=-1 \quad \therefore \quad x=+5
$$

$\Rightarrow \quad \mathrm{Co}^{+5}: 3 d^{4}$
$\Rightarrow \quad 4 e^{-}(\mathrm{s})$ are unpaired
14. If a gas expands at constant temperature, it indicates that
(1) kinetic energy of molecules decreases
(2) pressure of the gas increases
(3) kinetic energy of molecules remains the same (4) number of the molecules of gas increases

Sol: Ans [3]
$\mathrm{KE} \propto \mathrm{T}$, here the process is isothermal.
15. For the gas phase reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ which of the following conditions are correct?
(1) $\Delta \mathrm{H}=\mathrm{O}$ and $\Delta \mathrm{S}<\mathrm{O}$
(2) $\Delta \mathrm{H}>\mathrm{O}$ and $\Delta \mathrm{S}>\mathrm{O}$
(3) $\Delta \mathrm{H}<\mathrm{O}$ and $\Delta \mathrm{S}<\mathrm{O}$
(4) $\Delta \mathrm{H}>\mathrm{O}$ and $\Delta \mathrm{S}<\mathrm{O}$

Sol: Ans [4]

As process is endothermic end due to breaking randomness will increases.
16. In a $\mathrm{S}_{\mathrm{N}} 2$ substitution reaction of the type $\mathrm{R}-\mathrm{Br}+\mathrm{Cl}^{-} \xrightarrow{\text { DMF }} \mathrm{R}-\mathrm{Cl}+\mathrm{Br}^{-}$, which ne of the following has the highest relative rate?
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$
(2)

(3)

(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$

Sol: Ans [4]

As formation of $\mathrm{CH}_{3} \mathrm{CH}_{2}^{+}$from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ will be most infavourable.
17. Number of moles of MnO_{4}^{-}required to oxidize one mole of ferrous oxalate completely in acidic medium will be
(1) 0.6 moles
(2) 0.4 moles
(3) 7.5 moles
(4) 0.2 moles

Sol: Ans [1]

$$
\begin{aligned}
& \underset{\text { (VF=5) }}{\mathrm{MnO}_{4}^{-}}+\underset{(\mathrm{VF}=3)}{\mathrm{FeC}_{2} \mathrm{O}_{4}} \xrightarrow{\mathrm{H}^{+}} \\
& \Rightarrow \quad \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}+\mathrm{C}^{4+} \\
& \Rightarrow 5 \mathrm{mols} \text { of } \mathrm{FeC}_{2} \mathrm{O}_{4} \equiv 3 \text { moles of } \mathrm{KMnO}_{4} \\
& \therefore 1 \mathrm{~mole}
\end{aligned}
$$

18. If the concentration of OH^{-}ions in the reaction $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})$ is decreased by (1/4) times, then equilibrium concentration of Fe^{3+} will increase by
(1) 8 times
(2) 16 times
(3) 64 times
(4) 4 times

Sol: Ans [3]

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}}=x(3 x)^{3}=x^{\prime}\left(\frac{3}{4} x\right)^{3} \\
\Rightarrow \quad & x^{\prime}=64 x
\end{aligned}
$$

19. The sequence of ionic mobility in aqueous solution is
(1) $\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(2) $\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}$
(3) $\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Na}^{+}$
(4) $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$

Sol: Ans [2]

Due to greater charge density smaller cations hydrate heavily giving larger sized hydrated ions.
$\therefore \quad$ Mobility order becomes as

$$
\mathrm{Cs}_{(\text {aq. })}^{+}<\mathrm{Rb}_{(\text {aq. })}^{+}<\mathrm{K}_{(\text {aq. })}^{+}<\mathrm{Na}_{(\text {aq. })}^{+}
$$

20. The alkali metals form salt-like hydrides by the direct synthesis at elevated temperature. The thermal stability of these hydrides decreases in which of the following orders?
(1) $\mathrm{CsH}>\mathrm{RbH}>\mathrm{KH}>\mathrm{NaH}>\mathrm{LiH}$
(2) $\mathrm{KH}>\mathrm{NaH}>\mathrm{LiH}>\mathrm{CsH}>\mathrm{RbH}$
(3) $\mathrm{NaH}>\mathrm{LiH}>\mathrm{KH}>\mathrm{RbH}>\mathrm{CsH}$
(4) $\mathrm{LiH}>\mathrm{NaH}>\mathrm{KH}>\mathrm{RbH}>\mathrm{CsH}$

Sol: Ans [4]

Factual
21. Which one of the following arrangements does not give the correct picture of the trends indicated against it?
(1) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Oxidizing power
(2) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Electron gain enthalpy
(3) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Bond dissociation energy
(4) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Electronegativity

Sol: Ans [2, 3]

Magnitude of " $\Delta_{\text {eg }} H$ " for Cl is more than F due to greater screening in F
Due to smaller size of F and presence of ep of $e^{-}, \mathrm{F}-\mathrm{F}$ bond is weaker than $\mathrm{Cl}-\mathrm{Cl}$ bond.
22. Standard free energies of formation (in $\mathrm{kJ} / \mathrm{mol}$) at 298 K are $-237.2,-394.4$ and -8.2 for $\mathrm{H}_{2} \mathrm{O}(l)$, $\mathrm{CO}_{2}(\mathrm{~g})$ and pentane (g), respectively. The value of $\mathrm{E}_{\text {cell }}^{\circ}$ for the pentane-oxygen fuel cell is
(1) 1.968 V
(2) 2.0968 V
(3) 1.0968 V
(4) 0.0968 V

Sol: Ans [3]
$\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{~g})}+8 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$
$\Delta r \mathrm{G}^{-}{ }_{(298 \mathrm{~K})}=5(-394.4)+6(-237.2)-(-8.2)=-3387.2 \times 10^{3} \mathrm{~J} / \mathrm{mole}$
$\Delta r \mathrm{G}^{-}=n \mathrm{FE}^{\circ}{ }_{\text {cell }}$
$\Rightarrow \quad \mathrm{E}_{\text {cell }}^{\circ}=\frac{+3387.2 \times 10^{3}}{32 \times 96500}=1.0968 \mathrm{~V}$
23. $\mathrm{H}_{3} \mathrm{C}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow \mathrm{A}$; A (predominantly) is
(1)

(2)

(3)

(4)

Sol: Ans [2]

24. Base strength of
(a) $\mathrm{H}_{3} \mathrm{C}^{-} \mathrm{CH}_{2}$
(b) $\mathrm{H}_{2} \mathrm{C}={ }^{-} \mathrm{CH}$
(c) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}$
is in the order of
(1)
(b) $>$ (a) $>$ (c)
(2) $($ c $)>($ b) $>($ a)
(3) \quad (a) $>$ (c) $>$ (b)
(4) \quad (a) $>$ (b) $>$ (c)

Sol: Ans [4]

Conjugate base of stronger acid is always weaker so $\mathrm{HC} \equiv \mathrm{C}^{-}$will be weakest base here.
25. Which of the following statements is not correct?
(1) The fraction of the total volume occupied by the atoms in a primitive cell is 0.48
(2) Molecular solids are generally volatile
(3) The number of carbon atoms in an unit cell of Diamond is 4
(4) The number of Bravais lattices in which a crystal can be categorized is 14

Sol: Ans [1]

Packing Fraction of primitive cubic unit cell is 0.52 .
26. If ' a ' stands for the edge length of the cubic systems: simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively,
(1) $\frac{1}{2}$ a: $\frac{\sqrt{3}}{4}$ a $: \frac{1}{2 \sqrt{2}}$ a
(2) $\frac{1}{2}$ a: $\sqrt{3}$ a: $\frac{1}{\sqrt{2}}$ a
(3) $\frac{1}{2} \mathrm{a}: \frac{\sqrt{3}}{2} \mathrm{a}: \frac{\sqrt{2}}{2} \mathrm{a}$
(4) $1 \mathrm{a}: \sqrt{3} \mathrm{a}: \sqrt{2} \mathrm{a}$

Sol: Ans [1]

$\mathrm{sc}: r=\frac{a}{2} \cdot f c c: r=\frac{a}{2 \sqrt{2}}$, bcc $: r=\frac{4 \sqrt{3}}{4}$
27. The rate constants k_{1} and k_{2} for two different reactions are $10^{16} \mathrm{e}^{-2000 / \mathrm{T}}$ and $\left(10^{15} \mathrm{e}^{-1000 / \mathrm{T}}\right.$, respectively. The temperature at which $k_{1}=k_{2}$ is
(1) 1000 K
(2) $\frac{2000}{2.303} \mathrm{~K}$
(3) 2000 K
(4) $\frac{1000}{2.303} \mathrm{~K}$

Sol: Ans [4]

$k_{1}=10^{16} \mathrm{e}^{-2000 / \mathrm{T}}, \quad k_{2}=10^{15} \mathrm{e}^{-2000 / \mathrm{T}}=10^{15} . \mathrm{e}^{-1000 / \mathrm{T}}$.
If $k_{1}=k_{2}$ then $10^{16} \cdot \mathrm{e}^{-2000 / \mathrm{T}}=10^{15} \cdot \mathrm{e}^{-1000 / \mathrm{T}}$.
$\Rightarrow \quad 10^{16} \cdot \mathrm{e}^{-2000 / \mathrm{T}}=\mathrm{e}^{-1000 / \mathrm{T}}$
$\Rightarrow \ln 10-\frac{2000}{\mathrm{~T}}=-\frac{1000}{\mathrm{~T}} \therefore \ln 10=\frac{2000}{\mathrm{~T}}-\frac{1000}{\mathrm{~T}}=\frac{1000}{\mathrm{~T}}$
$\therefore \quad \mathrm{T}=\frac{1000}{\ln 10}=\frac{1000}{2.303}$
28. What volume of oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at $0^{\circ} \mathrm{C}$ and 1 atm , is needed to burn completely 1 L of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ measured under the same conditions?
(1) 7 L
(2) 6 L
(3) 5 L
(4) 10 L

Sol: Ans [3]
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
1 vol $\mathrm{C}_{3} \mathrm{H}_{8} \equiv 5$ volumes of $\mathrm{O}_{2} \Rightarrow 1 \mathrm{~L} \equiv 5 \mathrm{~L}$
29. The correct order of increasing bond angles in the following triatomic species is
(1) $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}$
(2) $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{+}$
(3) $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{-}$
(4) $\mathrm{NO}_{2}{ }^{+}<\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}$

Sol: Ans [2]
$\mathrm{NO}_{2}{ }^{-}\left(120^{\circ}\right)<\mathrm{NO}_{2}($ bent $)<\mathrm{NO}_{2}{ }^{\oplus}\left(180^{\circ}\right)$
30. How many stereoisomers does this molecule have? $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CHBrCH}_{3}$
(1) 4
(2) 6
(3) 8
(4) 2

Sol: Ans [1]
Number of geometrical isomers $=2$
number of chiral carbons $=1 \Rightarrow$ optical isomer $=2$
31. Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH ?
(1) SrCl_{2}
(2) BaCl_{2}
(3) MgCl_{2}
(4) CaCl_{2}

Sol: Ans [2]
$\mathrm{BaCl}_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$
with water up to some extent Ba^{2+} will form $\mathrm{Ba}(\mathrm{OH})_{2}$ that is highly soluble giving highest pH .
32. Four diatomic species are listed below in different sequences. Which of these presents the correct order of their increasing bond order?
(1) $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}{ }^{2-}<\mathrm{He}_{2}^{+}$
(2) $\mathrm{NO}<\mathrm{C}_{2}{ }^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
(3) $\mathrm{C}_{2}{ }^{2-}<\mathrm{He}_{2}^{+}<\mathrm{NO}<\mathrm{O}_{2}^{-}$
(4) $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}{ }^{2-}$

Sol: Ans [4]
$\mathrm{He}_{2}^{+}(0.5)<\mathrm{O}_{2}^{-}(1.5)<\mathrm{NO}(2.5)<\mathrm{C}_{2}{ }^{2-}(3)$
33. Percentage of free space in a body centred cubic unit cell is
(1) 30%
(2) 32%
(3) 34%
(4) 28%

Sol: Ans [2]
Packing friction of $\mathrm{bcc}=0.68$.
34. With which one of the following elements silicon should be doped so as to give p-type of semiconductor?
(1) Germanium
(2) Arsenic
(3) Selenium
(4) Boron

Sol: Ans [4]

Boron has 3 valence electrons.
35. An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave $C, 38.71 \%$ and $\mathrm{H}, 9.67 \%$. The empirical formula of the compound would be
(1) $\mathrm{CH}_{3} \mathrm{O}$
(2) $\mathrm{CH}_{2} \mathrm{O}$
(3) CHO
(4) $\mathrm{CH}_{4} \mathrm{O}$

Sol: Ans [1]

$$
\begin{aligned}
& \frac{38.71}{12}=3.226=\frac{3.226}{3.226}=1 \\
& \frac{9.67}{1}=9.67 \\
& \mathrm{C}=\frac{38.71}{12}=3.226=\frac{3.226}{3.226}=1 \\
& \mathrm{H}=\frac{9.67}{1}=9.67=\frac{9.67}{3.226} \approx 3 \\
& \mathrm{O}=\frac{51.72}{16}=3.23 \quad \frac{3.23}{3.226} \approx 1
\end{aligned}
$$

hence empinical formula is $\mathrm{CH}_{3} \mathrm{O}$

36. The measurement of the electron position is associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{cms}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$)
(1) $1 \times 10^{9} \mathrm{cms}^{-1}$
(2) $1 \times 10^{6} \mathrm{cms}^{-1}$
(3) $1 \times 10^{5} \mathrm{cms}^{-1}$
(4) $1 \times 10^{11} \mathrm{cms}^{-1}$

Sol: Ans [1]

$$
\begin{aligned}
\mathrm{m} \Delta \mathrm{v} & =1 \times 10^{-18} \mathrm{gm} \mathrm{cms}^{-1} \\
\Delta \mathrm{v} & =\frac{1 \times 10^{-18} \mathrm{gm} \mathrm{cms}^{-1}}{9 \times 10^{-28} \mathrm{gm}} \\
& =0.1 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1} \\
& =109 \mathrm{cms}^{-1}
\end{aligned}
$$

37. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
(1) 0.044
(2) 0.333
(3) 0.011
(4) 0.029

Sol: Ans [4]

$$
\mathrm{PbO}+2 \mathrm{HCl} \longrightarrow \mathrm{PbCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$\begin{array}{lll}\text { wt } & 6.5 & 3.2\end{array}$
$\begin{array}{lll}\text { moles. } & \frac{6.5}{222} \quad \frac{3.2}{36.5}\end{array}$
$0.0281 \quad 0.0876$
so PbO is limiting reagent
moles aq $\mathrm{PbCl}_{2}=0.029$
38. In a reaction of aniline a coloured product C was obtained.

(1)

(2)

(3)

(4)

Sol: Ans [4]

39. A strong base can abstract an α-hydrogen from
(1) Alkene
(2) Amine
(3) Ketone
(4) Alkane

Sol: Ans [3]
α-hydrogen of ketone are acidic due to resonance stabilisation aq. carbanion formed.
40. The stability of carbanions in the following
(a) $\mathrm{RC}=\stackrel{\ominus}{\mathrm{C}}$
(b)

(c) $\mathrm{R}_{2} \mathrm{C}=\stackrel{\ominus}{\mathrm{C}} \mathrm{H}$
(d) $\mathrm{R}_{3} \mathrm{C}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$
is in the order of
(1)
(a) $>$ (b) $>$ (c) $>$
(d) (2)
(b) $>$ (c) $>$
(d) > (a) (3)
(d) $>($ b) $>($ c) $>($ a $)$
(4)
(a) $>$ (c) $>($ b $)>($ d $)$

Sol: Ans [2]

$\mathrm{RC}=\stackrel{\ominus}{\mathrm{C}}$ due to incompleted octet will be least stable, while ${ }^{\ominus}$ max stable.
41. Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 434,242 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Enthalpy of formation of HCl is
(1) $93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $-245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Sol: Ans [3]
$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{HCl})=\frac{434+242-(2 \times 431)}{2}=-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
42. The dissociation equilibrium of a gas AB_{2} can be represented as

$$
2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g})
$$

The degree of dissociation is ' x ' and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant K_{P} and total pressure P is
(1) $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{P}\right)$
(2) $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{P}\right)^{1 / 3}$
(3) $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{P}\right)^{1 / 2}$
(4) $\left(\mathrm{K}_{\mathrm{p}} / \mathrm{P}\right)$

Sol: Ans [2]

$$
\begin{aligned}
& 2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \\
& \mathrm{t}=0 \begin{array}{llll}
1 & 0 & 0
\end{array} \\
& \mathrm{t}=\mathrm{eq} 1-x \quad x \quad x / 2 \\
& \mathrm{Kp}=\frac{\left(\frac{x}{1+x / 2} \times \mathrm{P}\right)\left(\frac{x / 2}{1+x / 2} \times \mathrm{P}\right)}{\left(\frac{1-x}{1+x / 2} \times \mathrm{P}\right)^{2}}=\frac{x^{2} \times x \times 1}{2 \times(1-x) \times(1+x / 2)} \times \mathrm{P} \\
& \because x \lll 1 \\
& \mathrm{Kp}=\frac{x^{3} \times \mathrm{P}}{2} \\
& x=\left(\frac{2 \mathrm{Kp}}{\mathrm{P}}\right)^{1 / 3}
\end{aligned}
$$

43. Which one of the following is an amine hormone?
(1) Thyroxine
(2) Oxypurin
(3) Insulin
(4) Progesterone

Sol: Ans [1]

Factual
44. Which one of the following statements is not true?
(1) In vulcanization, the formation of sulphur bridges between different chains make rubber harder and stronger
(2) Natural rubber has the trans-configuration at every double bond
(3) Bona-S is a copolymer of butadiene and styrene
(4) Natural rubber is a 1, 4-polymer of isoprene

Sol: Ans [2]

Natural rubber is cis-isomer
45. In the hydrocarbon

$\mathrm{CH}_{3}-\mathrm{CH}$	$=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$				
6	5	4	3	2	1

The state of hybridization of carbons 1,3 and 5 are in the following sequence:
(1) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
(3) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}$

Sol: Ans [2]
$\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$ for triple, single and double bond respectively.
46. The values of $K p_{1}$ and $K p_{2}$ for the reactions

$$
\begin{equation*}
\mathrm{X} \rightleftharpoons \mathrm{Y}+\mathrm{Z} \tag{1}
\end{equation*}
$$

$A \rightleftharpoons 2 B$
are in ratio of $9: 1$. If degree of dissociation of X and A be equal, then total pressure at equilibrium (1) and (2) are in the ratio:
(1) $3: 1$
(2) $1: 9$
(3) $36: 1$
(4) $1: 1$

Sol: Ans [3]

X	$\rightleftharpoons \mathrm{Y}$	+
1	0	Z
$1-x$	x	
$1-x$		

$$
\mathrm{Kp}_{1}=\frac{\left(\frac{x}{1+x} \times \mathrm{P}\right)^{2}}{\left(\frac{1-x}{1+x} \times \mathrm{P}\right)}=\frac{x^{2}}{(1+x)(1-x)} \times \mathrm{P}_{1}
$$

A	$\rightleftharpoons 2 \mathrm{~B}$
1	0
$1-x^{\prime}$	$2 x^{\prime}$

$\mathrm{Kp}_{2}=\frac{\left(\frac{2 x^{\prime}}{1+x^{\prime}} \times \mathrm{P}\right)^{2}}{\left(\frac{1-x^{\prime}}{1+x^{\prime}} \times \mathrm{P}\right)}=\frac{4 x^{\prime 2} \times \mathrm{P}_{2}}{\left(1+x^{\prime}\right)\left(1-x^{\prime}\right)}$
$\frac{\mathrm{K}_{\mathrm{P}_{1}}}{\mathrm{~K}_{\mathrm{P}_{2}}}=\frac{9}{1}=\frac{x^{2}}{4 x^{2}} \times \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{4 x^{2} \times 9}{x^{2}}=36: 1$
47. In DNA the complimentary bases are
(1) Adenine and thymine; guanine and cytosine
(2) Adenine and thymine; guanine and uracil
(3) Adenine and guanine; thymine and cytosine
(4) Uracil and adenine; cytosine and guanine

Sol: Ans [1]

In DNA thymine is found in place at uracil found in RNA.
48. The bromination of acetone that occurs in acid solution is represented by this equation.
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{a})+\mathrm{Br}^{-}(\mathrm{aq})$
These kinetic data were obtained for given reaction concentrations.
Initial Concentrations, M

$\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$	$\left[\mathrm{Br}_{2}\right]$	$\left[\mathrm{H}^{+}\right]$
0.30	0.05	0.05
0.30	0.10	0.05
0.30	0.10	0.10
0.40	0.05	0.20

Initial Rate, disappearance of $\mathrm{Br}_{2}, \mathrm{Ms}^{-1}$

$$
\begin{aligned}
& 5.7 \times 10^{-5} \\
& 5.7 \times 10^{-5} \\
& 1.2 \times 10^{-4} \\
& 3.1 \times 10^{-4}
\end{aligned}
$$

Based on these data, the rate equation is:
(1) Rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$
(2) Rate $=k\left[\mathrm{CH}=\mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]$
(3) Rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]^{2}$
(4) Rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]$

Sol: Ans [1]

From set (1) and (2) if cncentration of Br_{2} is changed rate is not changed so $\left[\mathrm{Br}_{2}\right]$ should not be in rate law.
49. The value of equilibrium constant of the reaction
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}$ is 8.0
The equilibrium constant of the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ will be
(1) $\frac{1}{16}$
(2) $\frac{1}{64}$
(3) 16
(4) $\frac{1}{8}$

Sol: Ans [2]
$\mathrm{Kc}^{\prime}=\frac{1}{\left(\mathrm{~K}_{\mathrm{c}}\right)^{2}}=\frac{1}{(8)^{2}}=\frac{1}{64}$.
50. In which of the following coordination entities the magnitude of $\Delta \mathrm{O}$ (CFSE in octahedral field) will be maximum?
(1) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(4) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Sol: Ans [3]
Stronger the ligand high is the CFSE.

