The question will be based on the concept of the following syllabus

CLASS XI - CHEMISTRY

Unit I: Some Basic Concepts of Chemistry

General Introduction: Importance and scope of chemistry.

Historical approach to particulate nature of matter, laws of chemical combination, *Dalton's atomic theory*: concept of elements, atoms and molecules.

Atomic and molecular masses. Mole concept and molar mass; percentage composition and empirical and molecular formula; chemical reactions, stoichiometry and calculations based on stoichiometry.

Unit II: Structure of Atom

Discovery of electron, proton and neutron; atomic number, isotopes and isobars. Thompson's model and its limitations, Rutherford's model and its limitations, Bohr's model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie's relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p, and d orbitals, rules for filling electrons in orbitals – Aufbau principle, Pauli exclusion principle and Hund's rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

Unit III: Classification of Elements and Periodicity in Properties

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements – atomic radii, ionic radii, inert gas radii, ionization enthalpy, electron gain enthalpy, electronegativity, valence.

Unit IV: Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization involving s, p, and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only), hydrogen bond.

Unit V: States of Matter: Gases and Liquids

Three states of matter, intermolecular interactions, type of bonding, melting and boiling points, role of gas laws in elucidating the concept of the molecule, Boyle's law, Charles' law, Gay Lussac's law, Avogadro's law, ideal behaviour, empirical derivation of gas equation, Avogadro's number, ideal gas equation, deviation from ideal behaviour, liquefaction of gases, critical temperature. Liquid State – Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations).

Unit VI: Thermodynamics

Concepts of system, types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, heat capacity and specific heat, measurement of ΔU and ΔH, Hess's law of constant heat summation, enthalpy of: bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, and dilution. Introduction of entropy as a state function, free energy change for spontaneous and nonspontaneous process, equilibrium.

Unit VII: Equilibrium

Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium – Le Chatelier's principle; ionic equilibrium – ionization of acids and bases, strong and weak electrolytes, degree of ionization, concept of pH. Hyrolysis of salts (elementary idea), buffer solutions, solubility product, common ion effect (with illustrative examples).

Unit VIII: Redox Reactions

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, applications of redox reactions.

Unit IX: Hydrogen

Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides – ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide – preparation, reactions and structure; hydrogen as a fuel.

Unit X: s-Block Elements (Alkali and Alkaline Earth Metals) Group 1 and Group 2 elements:

General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses.
Preparation and properties of some important compounds:
Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate, biological importance of sodium and potassium. CaO, CaCO\textsubscript{3}, and industrial use of lime and limestone, biological importance of Mg and Ca.

Unit XI: Some p-Block Elements
General Introduction to p-Block Elements

\textit{Group 13 elements:} General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group; Boron – physical and chemical properties, some important compounds: borax, boric acids, boron hydrides. Aluminium: uses, reactions with acids and alkalies.

\textit{Group 14 elements:} General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first element. Carbon – catenation, allotropic forms, physical and chemical properties; uses of some important compounds: oxides. Important compounds of silicon and a few uses: silicon tetrachloride, silicones, silicates and zeolites.

Unit XII: Organic Chemistry – Some Basic Principles and Techniques
General introduction, methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds.

Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation.

Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions

Unit XIII: Hydrocarbons
Classification of hydrocarbons

\textbf{Alkanes:} Nomenclature, isomerism, conformations (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis.

\textbf{Alkenes:} Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation; chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition.

\textbf{Alkynes:} Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of – hydrogen, halogens, hydrogen halides and water.

\textbf{Aromatic hydrocarbons:} Introduction, IUPAC nomenclature; Benzene: resonance, aromaticity; chemical properties: mechanism of electrophilic substitution – nitration sulphonation, halogenation, Friedel Craft’s alkylation and acylation; directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity.

Unit XIV: Environmental Chemistry

\textit{Environmental pollution:} Air, water and soil pollution, chemical reactions in atmosphere, smogs, major atmospheric pollutants; acid rain, ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming – pollution due to industrial wastes; green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution.