Arpita Kaul¹ and Ajay Kr. Singh²

Department of Commerce, Sri Venkateswara College, University of Delhi, New Delhi, India.
 Department of Commerce, Delhi School of Economics, University of Delhi, India.

Structural capital is that infrastructure, processes, procedures and databases of the organization that help human capital to function (Maddocks & Beaney, 2002). In order to gain perspective on the concept of structural capital an extensive review of literature was carried out. Objectives of the study were

- 1. To study and identify the existing constituents of structural capital.
- 2. To identify new components of structural capital.
- 3. To find out the interrelationship between various constituents of structural capital.
- a) To study the relationship between organizational capital and structural capital.
- b) To study the relationship between technological capital and structural capital.
- 4. To develop new comprehensive framework of structural capital in terms of its antecedents and consequents.

The sample of the study is 269 and is from service sector. The data were collected using the questionnaire formulated after the Review of Literature, the questionnaire had 123 questions. Exploratory Factor Analysis, Confirmatory Factor Analysis and Structural Equation Modelling was used.

In conclusion, Organizational Culture & Climate, Business Reengineering, Intellectual Property Rights, Research and Development, and Internal Control System are predictors of Structural Capital and Impact of systems & programs and Impact of research & development are consequences of structural capital. Also, Management of Information System mediates the relationship between all the predictors except Internal Control System and structural capital

Keywords: System, Information System and Participation

INTRODUCTION

Our economy is evolving from being an agrarian economy, to industrial economy to service economy to knowledge economy to a wisdom economy. So, the nature of our economy has made it necessary to understand the concept of structural capital. As new employees, who will replace old employees can always learn from these structures so that the significance of the employees who leave diminishes.

Structural capital is that infrastructure, processes, procedures and databases of the organization that help human capital to function (Maddocks & Beaney, 2002)."The knowledge that stays in the organization when all employees leave at the end of the day. This includes processes, databases and software, (Lundberg, 2012) but also work products from the enterprise architects."

According to the (Edvinsson, 1997), Structural capital can be classified into organization capital, process capital, and innovation capital.

Organization capital includes organization philosophy and systems; while, process capital comprises techniques, procedures, and processes; and innovation capital comprises intellectual property rights and intangible assets. (Essays UK, 2013)

REVIEW OF LITERATURE

In order to gain perspective on the concept of structural capital an extensive review of literature was carried out. It was found that hardly any literature is available on this topic in India which means not much work has been done on this area in India.

Table No. 1 has been formulated stating the definitions given by different researchers.

Table No. 1: "Con	ceptualization of Structural Capital"
Authors	Definitions of Structural Capital
Bontis, (1996)	"Those technologies, methodologies, and processes that make the functioning of the organization possible, this is, basically the elements that define the working mode of the firm."
Kogut& Zander, (1996)	"Elements that belong to the organization and that facilitates its configuration as an entity providing coherence and superior principles for coordination."
Euroforum, (1998)	"Knowledge that can be reproduced and shared, therefore, becomes somewhat explicit."
Camison, Palacios, & Devece, (2000)	"Knowledge that the organization has internalized and that remains within its structure processes or culture although employees leave."
Carson, Ranzijn, Winefield, & Marsden, (2004)	"Processes and procedures that arise from employee intellectual contribution."
Ordonez de Pablos, (2004)	"Knowledge that remains in the organization when employees return to their homes and, therefore, is owned by the firm. In this sense, SC is integrated by organizational routines, strategies, process manuals, and datoabases."
Alama, (2007)	"Intangibles that determine the manner of working of a company."

(Essays UK, 2013)

Dr. Nick Bontis, Director, Institute for Intellectual Capital Research Inc. designed a questionnaire to develop and test a measure for Intellectual Capital. The questions relating to structural capital were as follows:

- ➤ "When an employee leaves the firm, we do not have a succession training program for his/ her replacement.
- ➤ Our company develops more new ideas and products than any other firm in the industry.
- When someone comes up with a great idea, we do not share the knowledge within the firm as much as we should.
- Our recruitment program is comprehensive; we are dedicated to hiring the best candidates available.
- Our data system makes it easy to access relevant information.
- ➤ If certain individuals in the firm unexpectedly leave then, we would be in big trouble.
- The systems and procedures of the organization support innovation.
- > Individuals learn from others.
- Employees are excited to voice their opinions in group discussions.
- ➤ Our organizational structure keeps employees from being too far removed from each other.
- The organization's culture and atmosphere is supportive and comfortable."

(Bontis, 1998)

Two studies which were conducted on this particular topic have been discussed in detail in Table No. 2

	Tal	ole No. 2: Details o	f the studies related to	the topic	
Authors	Topic of study	Country of study	Sample size	Survey instrument	Test Applied
Aziz, Sharabati, Jawad & Bontis, (2010)	Intellectual capital and business performance in the pharmaceutical sector	Jordan	132 top and middle level managers drawn from Jordanian Association of Pharmaceutical Manufacturers (JAPM)	Based on Bontis' intellectual capital questionnaire	1.Kolmogorov Smirnov 2.Cronbach alpha 3.Pearson's principal component analysis 4.Pearson's bivariate correlation coefficient 5.ANOVA test 6.Partial Least Squares 7.Path analysis
Sofian, Tayles, & Richard, 2005	"The implications of intellectual capital on performance measurement and corporate performance"	Malaysia	With a 35% response rate, 119 responses were received. The companies "were randomly selected from the Kuala Lumpur Stock Exchange (KLSE) list. The high Intellectual Capital companies were drawn from four broad sectors, where IC is expected to be beneficial, technology, consumer products, trading and services, and finance sectors."	25 questions "were used to construct variables for human (HIC), structural (SIC), and relational (RIC) capital"	Tests for reliability Analysis of descriptive statistics Spearman-Rho's Rank Correlation

SCOPEOF RESEARCH WORK

This study is restricted to the service sector organizations in India. In service sector following sectors have been selected for the study:

- Banking
- Hotels
- Reality
- Information Technology
- Communication

The organizations have been selected on the basis of Net Sales for March 2012 according to Prowess database. The top three private and public sector banking organizations, top three hotels, top three telecommunication companies, top three real estate companies, and top three IT companies given in Prowess on the basis of net sales were randomly selected.

FORMULATION OF THE PROBLEM AND METHODOLOGY

While going through the concept of intellectual capital it was found that broadly it can be categorized into three:

- 1. Human Capital
- 2. Structural Capital
- Relational Capital

It was observed that a lot of work has been done on the topic of Human Capital but structural capital, has not been well studied and researched in India. Many authors have defined the term in different ways. Also, the constituents of structural capital have been brought forward by diverse researchers.

So, the research gaps have been identified and it was decided to find out the status of the concept of structural capital in the Indian service sector industry.

This study concentrates on:

- 1. Identify the meaning of structural capital.
- 2. Identify the constituents of structural capital.

Thus the research questions are:

Research Question 1: What do you mean by the term structural capital?

Research Question 2: What are the constituents of structural capital?

Methodology

Objectives of Study

- 1. To study and identify the existing constituents of structural capital.
- 2. To identify new components of structural capital.
- 3. To find out the interrelationship between various constituents of structural capital.
 - a) To study the relationship between organizational capital and structural capital.
 - b) To study the relationship between technological capital and structural capital.
- 4. To develop new comprehensive framework of structural capital in terms of its antecedents and consequents.

Population

The population for this study constitutes all the employees of all levels of service sector organizations except the lower level of the selected organizations.

Sample

The sample of this study is the employees of all levels except the lower level of service sector organizations like Industrial Credit and Investment Corporation of India Bank Ltd., Housing Development Finance Corporation Bank Ltd., Axis Bank Ltd., State Bank of India, Punjab National Bank, Canara Bank, Indian Hotels Co. Ltd., EIH Ltd., etc.

Data Analysis: Data collected from structured questionnaire has been analyzed with the help of various statistical softwares like Statistical Package for Social Sciences (SPSS 20) (for univariate and multivariate analysis), AMOS 20 (for structured equation modelling), etc.

Reliability for the constituents of structural capital is gauged by cronbach's alpha and spearman's-brown equal length, and split half coefficient. Confirmatory factor analysis has been used to ensure construct validity of the various constituents of structural capital.

Survey

QUESTIONNAIRE DESIGNING

The first most important thing to do the survey is designing a questionnaire; hence, the following procedure was followed for designing the questionnaire.

After an in-depth literature review a questionnaire containing 123 questions was formulated. The questionnaire had the following factors (containing various questions) taken from various studies:

	Table No. 3: Table showing variables and factors taken from various researches								
S.No.	Factor	Research							
1.	System	(Topal, Conkar, & U C), (Bontis, 1998), (Aziz, Sharabati, Jawad, & Bontis, 2010), (Sofian, Tayles, & Richard, 2005), (Youndt & Snell, 2004)							
2.	Research and Development	(Aziz, Sharabati, Jawad, & Bontis, 2010)							
3.	Intellectual Property Rights	(Amiri, Jandghi, Alvani, Hosnavi, & Majid, 2010), (Sofian, Tayles, & Richard, 2005), (Youndt & Snell, 2004)							
4.	Information System	(Topal, Conkar, & U C), (Bontis,1998), (Youndt & Snell, 2004), (Aziz, Sharabati, Jawad, & Bontis, 2010), (Sofian, Tayles, & Richard, 2005)							
5.	Culture	(Topal, Conkar, & U C), (Bontis, 1998), (Amiri, Jandghi, Alvani, Hosnavi, & Majid, 2010), (Youndt & Snell, 2004)							
6.	Learning Organization	(Topal, Conkar, & U C), (Bontis, 1998), (Amiri, Jandghi, Alvani, Hosnavi, & Majid, 2010), (Sofian, Tayles, & Richard, 2005)							
7.	New Ideas	(Bontis, 1998), (Sofian, Tayles, & Richard, 2005), (Amiri, Jandghi, Alvani, Hosnavi, & Majid, 2010), (www.hfi.com, 2011)							
8.	Documentation	(Youndt & Snell, 2004)							
9.	Strategy	(Amiri, Jandghi, Alvani, Hosnavi, & Majid, 2010)							
10.	Communication	(www.hfi.com, 2011)							
11.	Authority and Responsibility	(www.hfi.com, 2011)							
12.	Participation	(www.hfi.com, 2011)							

Data collection details

1	Table No. 4 showing details of data collection from all service sector organizations							
S.NO.	SECTOR	NO. OF RESPONSES						
1.	BANKING	156						
2.	REAL ESTATE	47						
3.	INFORMATION TECHNOLOGY	44						
4.	OTHER SERVICE SECTOR (HOTELS AND COMMUNICATION)	22						
	TOTAL	269						

Results

Reliability Analysis

Reliability Analysis: Cronbach's alpha was computed using SPSS 20 for all the factors and the entire questionnaire in order to test the internal consistency of the questions.

	Table No. 5 Cronbach's alpha								
S. No.	Name of construct	Value of Cronbach's alpha							
1.	System	0.802							
2.	Research & Development	0.914							
3.	Intellectual Property Rights	0.964							
4.	Information System	0.886							
5.	Culture	0.760							
6.	Learning Organization	0.808							
7.	New Ideas	0.932							
8.	Documentation	0.834							
9.	Strategy	0.535							
10.	Communication	0.876							
11.	Authority & Responsibility	0.900							
12.	Participation	0.915							

The value of Cronbach's alpha for all the above factors is more than 0.75 except in case of strategy; hence there is internal consistency in all the factors except in the factor strategy. The reliability of the entire questionnaire is 0.978.

6 Exploratory Factor Analysis

(Tabachnick & Fidell, 2007)"suggests that one should have at least 300 cases for factor analysis. (Hair, Anderson, Tatham, & Black, 1995) proposed that sample sizes can be 100 or greater. However, different school of authors, have different opinions (MacCullum, Widaman, Zhang, & Hong, 1999) believe that when the communalities are higher (greater than 0.6), and several variables explain each factor, then relatively small sample size can also be sufficient."

Varimax rotation was run, restricting the number of factors to 8 and cut off of 0.05 was taken, the result was that 63.717% variance was explained.

Table No. 5(given in Annexure 1) shows that 8 factors explain 63.717% variance. The rotated component matrix is given in Table No. 6 (given in Annexure 2)

Naming the factors and Reliability of antecedents

After a detailed study of all the variables, the factors have been named and their reliability checked.

CONFIRMATORY FACTOR ANALYSIS

"In order to check how well the measured variables represent a construct CFA was applied. CFA was run on eight factors which were having three or more than 3 variables namely: OCC, IPR, ICS, RnD, BR, Imr, MIS, and Imos."

As can be seen in Figure 1, all the eight constructs are shown, each construct is having 3 or having more than 3 variables. The one sided arrow shows the relationship between construct and its variable and the two sided arrow shows the co-relation between the constructs. After applying the CFA, the validity was checked the results of which can be seen in Table No. 8

Validation of Factor Analysis

The next step is to assess the validity of the EFA so conducted. By employing confirmatory factor analysis (CFA), the researchers can cross validate the factor structure in an appropriate way (Byrne, 1998); (Joreskog & Sorbom, 1989); (Pedhazur & Schmelkin, 1991).

Table No. 8 Cronbach's Alpha Score of Antecedents									
Antecedents	Items scale summated	Cronbach's Alpha							
Organization Culture & Climate (OCC)	28	0.964							
Intellectual Property Rights (IPR)	15	0.964							
Internal Control System (ICS)	11	0.911							
Research and Development (RnD)	5	0.897							
Business Reengineering (BE)	3	0.734							
Impact of RnD (Imr)	4	0.784							
Management of Information System (MIS)	4	0.768							
Impact of system (Imos)	3	0.931							

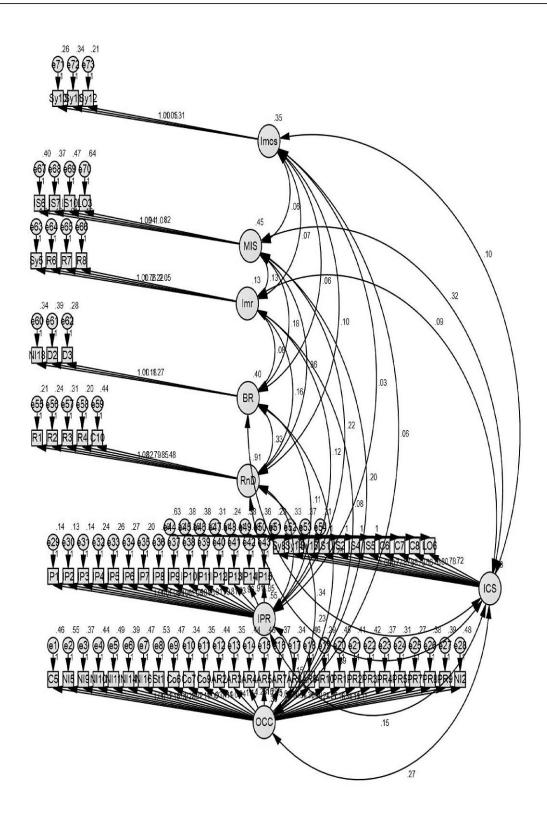


Figure 1 Confirmatory Factor Analysis of SC Antecedents

	Table No. 9 Validity scores for antecedents													
	CR	AVE	MSV	ASV	lmr	occ	IPR	ICS	RnD	BR	MIS	Imos		
Imr	0.853	0.620	0.307	0.182	0.787									
осс	0.964	0.491	0.521	0.293	0.420	0.701								
IPR	0.964	0.646	0.198	0.119	0.445	0.365	0.804							
ICS	0.914	0.491	0.458	0.244	0.361	0.677	0.274	0.701						
RnD	0.902	0.652	0.428	0.254	0.469	0.654	0.423	0.564	0.808					
BE	0.826	0.613	0.521	0.206	0.351	0.722	0.235	0.494	0.543	0.783				
MIS	0.777	0.467	0.425	0.246	0.554	0.542	0.434	0.652	0.555	0.423	0.683			
Imos	0.823	0.609	0.122	0.043	0.349	0.193	0.077	0.240	0.179	0.158	0.156	0.780		

VALIDITY CONCERNS

Discriminant Validity: the square root of the AVE for AR is less than one the absolute value of the correlations with another factor.

Convergent Validity: the AVE for OCC is less than 0.50.

Discriminant Validity: the AVE for OCC is less than the MSV.

Convergent Validity: the AVE for ICS is less than 0.50. Convergent Validity: the AVE for MIS is less than 0.50.

In order to resolve the validity issues all the variables with less than 0.7 standardized regression weights were removed. The variables C5, NI5, NI10, NI16, St1, Com 6, Com 9, AR 2, AR9, PR3, NI2, IP12, IP14, IP15, Sy 8, Sys 15, IS4, IS5, C8, LO6, C10, Sy 5, and LO3, all had standardized regression weight less than 0.7 and hence, were removed from further analysis. Therefore, once all the variables with less than 0.7 standardized regression weight were removed, CFA was again run and the validity was once again checked in the Smart Tool Package (Gaskin, 2012), the results are shown in Table No. 9.

	Table No. 10 Validity Assessment (Revised)												
	CR	AVE	MSV	ASV	IPR	occ	IS	RnD	BR	Imr	MI	Imos	
IPR	0.964	0.690	0.185	0.104	0.830								
осс	0.953	0.542	0.504	0.253	0.359	0.736							
IS	0.857	0.551	0.347	0.177	0.198	0.558	0.743						
RnD	0.918	0.738	0.402	0.221	0.409	0.634	0.447	0.859					
BR	0.826	0.613	0.504	0.183	0.223	0.710	0.415	0.530	0.783				
Imr	0.920	0.794	0.283	0.169	0.430	0.420	0.299	0.458	0.350	0.891			
MI	0.771	0.529	0.347	0.201	0.390	0.455	0.589	0.510	0.359	0.532	0.727		
Imos	0.823	0.609	0.120	0.046	0.063	0.202	0.278	0.168	0.156	0.346	0.162	0.780	
No Validit	y Concerns	- Wahoo!											

28

As there is no validity concern, we can go ahead and apply CFA.

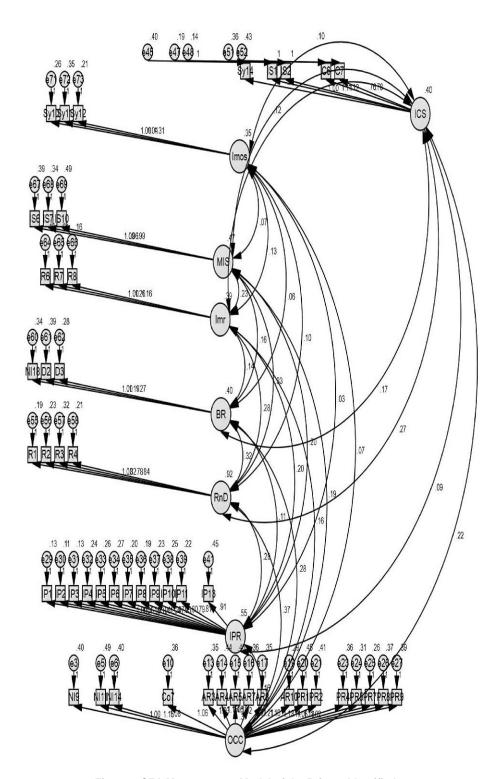


Figure 2 CFA Measurement Model of the Drivers Identified

After the removal of the above stated variables, the CFA was run again and the result can be seen in Figure 2.

Model Fit Summary

"The overall model $\chi 2$ is" 2294.795 with 1063 DOF. "The p-value is not significant though as our sample is large enough we can never get a significant value. In order to overcome this problem, it has been recommended, that a model exhibits a reasonable fit if the $\chi 2/DOF$ (i.e., chisquare divided by degrees of freedom) does not exceed 3.0" (Kline, 2004). In this case the $\chi 2/DOF = 2.159$ which exhibits that the model has a good fit as it is within the recommended range of less than or equal to 3.0.

"Further, the rule of thumb as suggested by (Hair, Black, Babin, & Anderson, 2010) elaborates elaborates that the researcher should focus on at least one absolute fit index and one incremental fit index, in addition to the $\chi 2$ results."

The RMSEA (root mean square error of approximation), which is an absolute fit index comes out to be 0.066. "According to (Browne & Cuddeck, 1992), RMSEA values ≤ 0.05 can be considered as a good fit, values between 0.05 and 0.08 as an adequate fit, and values between 0.08 and 0.10 as a mediocre fit, whereas values > 0.10 are not acceptable" (Engel, Moosbrugger, & Muller, 2003). Therefore, the value of RMSEA shows that our model is an adequate fit. The value of RMR (Root square residual) is 0.047, "wellfitting models obtaining values less than 0.05 (Byrne, 1998), (Diamantopoulos & Siguaw, 2000), however values as high as 0.08 are deemed acceptable" (Hu & Bentler, 1999). Thus, our model is well fit.

Moving towards the incremental fit indices, the researcher assessed CFI value. CFI is the most widely used index. In the present CFA model of SC predictors, the CFI has a value of 0.894. Although, "a cut-off criterion of CFI \geq 0.90 was initially advanced however, recent studies have shown that a value greater than 0.90 is needed in order to ensure that misspecified models are not accepted. From this, a value of CFI \geq 0.95 is presently recognized as indicative of good fit" (Hu & Bentler, 1999). In our model the CFI value does not pass this criterion by a mere 0.006 points.

Under parsimony adjusted measures, PNFI value is 0.713, (Mulaik, James, Van Alstine, Bennet, Lind, & Stilwell, 1989)"do note that it is possible to obtain parsimony fit indices within the 0.50 region while other goodness of fit indices achieve values over 0.90" (Mulaik, James, Van Alstine, Bennet, Lind, & Stilwell, 1989). Thus, our model is well fit.

Structural Equation Model (SEM)

After the completion of CFA we go ahead with SEM, from the questionnaire and the CFA we infer that Impact of research and development and Impact of system can be the two consequences and Organization Culture & Climate, Intellectual Property Rights, Internal Control System, Research and Development, Business Reengineering and Management Information System can be the antecedents of Structural Capital.

So, we get the Structural Equation Model as given in Figure No. 3.

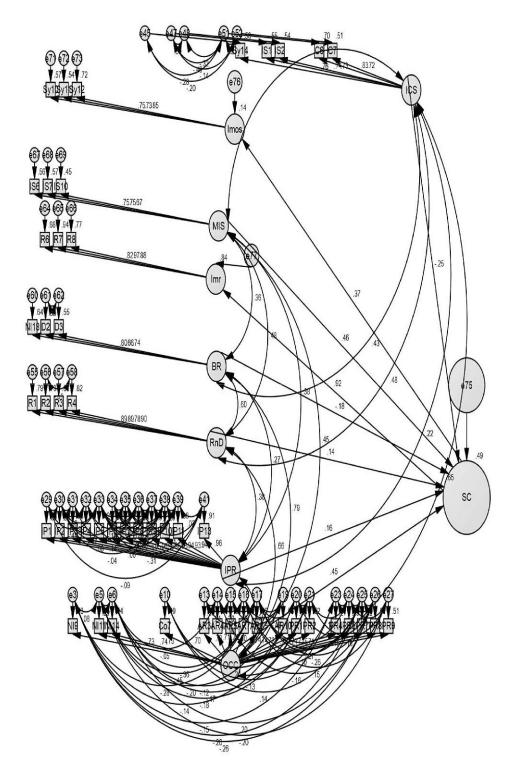


Figure No. 3 Structural Equation Model for Structural Capital

In order to interpret the given model, lets move step by step. I Step: Assessing the correlations between antecedents

Table	Table No. 11 Correlation between Antecedents									
Particul	ars		Correlation							
occ	<_>	IPR	0.359							
occ	<>	ICS	0.646							
occ	<>	RnD	0.657							
occ	<>	BR	0.794							
occ	<>	MIS	0.445							
IPR	<>	ICS	0.242							
IPR	<>	RnD	0.383							
IPR	<>	BR	0.27							
IPR	<>	MIS	0.395							
ICS	<>	RnD	0.481							
ICS	<>	BR	0.43							
ICS	<>	MIS	0.614							
RnD	<>	BR	0.6							
RnD	<>	MIS	0.483							
BR	<>	MIS	0.36							

We can infer from table 11that all antecedents have correlations amongst each other but none has a correlation as high as 0.8, which means there is no multicollinearity issue and all antecedents are not measuring the same thing.

Step II Checking the results of the SC Model

As can be inferred from Table No. 12 that there is only one predictor, Management Information System, also, Impact of Research and Development and Impact of system are indeed consequences of Structural capital.

	Table No. 12 Result of SC Model												
Relation	nship Depi	cted	Estimate	S.E.	C.R	Р	SRW						
SC	<	OCC	1				0.458						
SC	<	IPR	0.262	0.132	1.985	0.047	0.141						
SC	<	RnD	0.219	0.132	1.66	0.097	0.149						
SC	<	BR	-0.374	0.181	-2.067	0.039	-0.186						
SC	<	ICS	-0.527	0.186	-2.828	0.005	-0.259						
SC	<	MIS	0.933	0.25	3.73	***	0.469						
Imos	<	SC	0.157	0.032	4.889	***	0.368						
lmr	<	SC	0.42	0.076	5.506	***	0.921						

Mediation

Based on the Table No. 13, we take MIS as mediator and find out the direct effect on SC without mediator first and then the direct effect on SC with mediator.

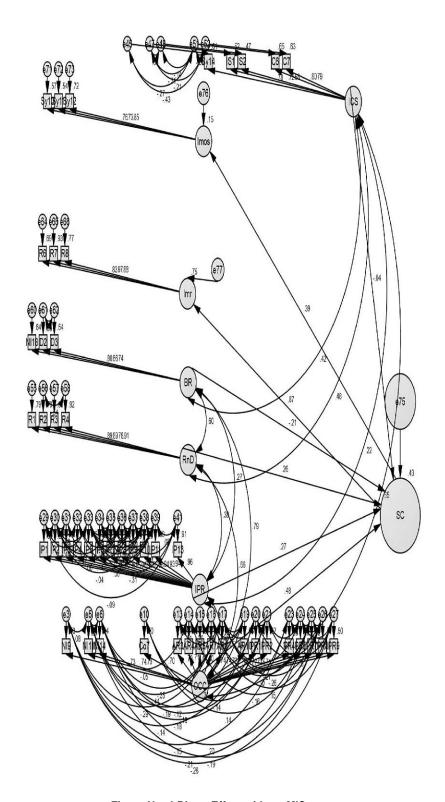


Figure No. 4 Direct Effect without MIS

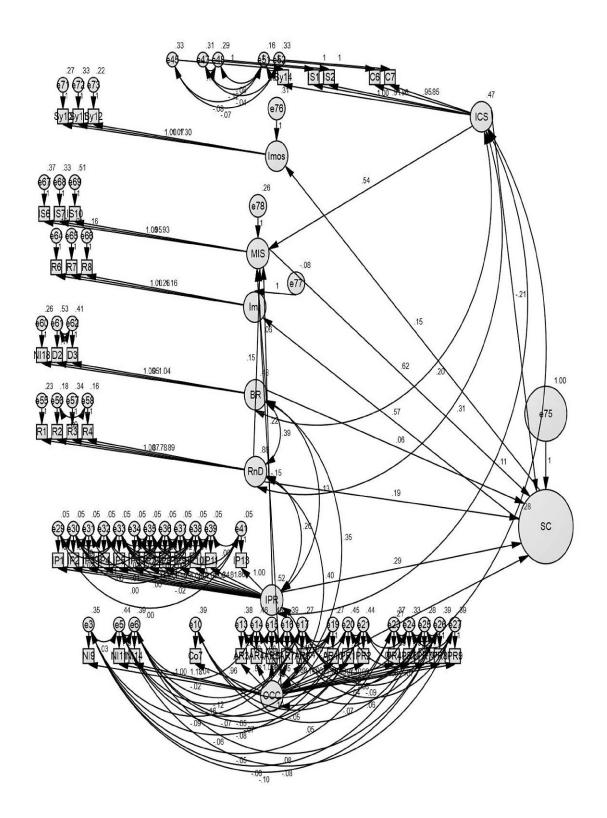


Figure No. 5 Mediating effect of MIS

Structural Capital:

A study of select organizations

(Baron & Kenny, 1986) Approach: According to this approach, the direct effect is first measured without mediator MIS on the dependent variable SC. The results are given in Table No. 11. Then mediator variable MIS is added and results are again mentioned in Table No. 11 in the respective column. There can be three results based on (Baron & Kenny, 1986) approach, viz., no mediation, partial mediation, and full mediation.

- 1. "If there is drop in strength in the second case, and still significant then it indicates partial mediation." This can be seen in case of IPR.
- 2. "Not significant in first case and still not significant in the second case indicating no mediation." This can be seen in the case of ICS.
- 3. "Drop in strength when compared to the first case, significant in first case and insignificant in second case depicting full mediation." This can be found in the case of OCC and RnD.

Bootstrapping

It is a method of testing the indirect effect of mediation. It is a non parametric method. It can be explained as follows:

"No mediation

- If indirect effect is insignificant.
- Also if direct effect of independent variable on mediator is insignificant.

Indirect Effect

 Both direct effects are not significant, but indirect effect is significant. This can be seen in the case of ICS.

Full mediation

- Given the direct effects were significant prior to adding the mediator.
- If indirect is significant and direct with mediator is not significant."

This can be seen in the case of OCC, BR and RnD.

Partial mediation

• If direct with mediator and indirect are significant. This can be seen in the case of IPR.

	Table No. 13 Testing mediation										
Relationship	Direct without mediator	Direct with mediator	Indirect Effect	Decision based on the above stated approach							
OCC-MIS-SC	1(S)	0.211(NS)	Significant	Full mediation							
ICS-MIS-SC	-0.082(NS)	-0.215(NS)	Significant	No mediation							
BR-MIS-SC	-0.407(S)	0.059(NS)	Significant	Full mediation							
RnD-MIS-SC	0.362(S)	0.185(NS)	Significant	Full mediation							
IPR-MIS-SC	0.492(S)	0.293(S)	Significant	Partial mediation							

On the basis of the analysis the SC model developed is given in Figure No. 6.

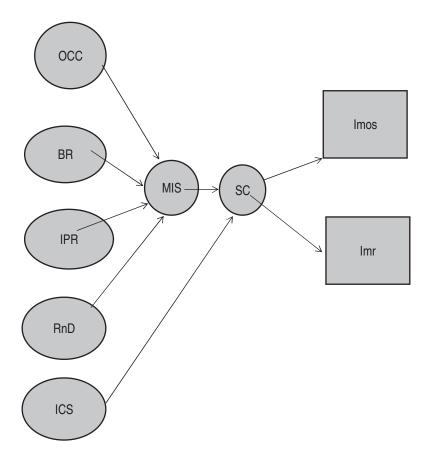


Figure No. 6 SC Model Simplified

Hence, we can conclude that Organizational Culture & Climate, Business Reengineering, Intellectual Property Rights, Research and Development, and Internal Control System are predictors of Structural Capital and Impact of systems & programs and Impact of research & development are consequences of structural capital. Also, Management of Information System mediates the relationship between all the predictors except Internal Control System and structural capital as can be inferred from Table 13.

RECOMMENDATIONS

As we see in order to have a good structural capital in service sector, organizations should have good organization culture and climate, intellectual property rights, research and development, management information system and business

reengineering. It is important that organizations that wish to build a good structural capital should emphasize on all the above stated factors.

Recommendations for improving Organization Culture and Climate

According to the Organization Culture questionnaire from (Human Factor International, 2011), organization culture can have thirteen dimensions, out of the thirteen dimensions only four dimensions were found to be related to structural capital and were included in the present study.

The dimensions were innovation, communication, organization structure and participation. After the application of SEM all these four dimensions were clubbed into one factor and named as Organization culture and climate.

It was found that organization culture is a predictor of structural capital, thus, to enhance the structural capital of an organization following steps can be emphasized:

- 1. Promoting innovation: Employees should be encouraged to be innovative, rewards and appreciation can bring innovation in the organization as was stated in the eighth question relating to the factor participation of the questionnaire.
- 2. Top management should spend time on the new ideas submitted by employees and time should be made available to employees to come up with new ideas as was stated in eleventh question relating to the factor new ideas and fifth question relating to the factor participation of the questionnaire.
- 3. A smooth and extensive orientation and socialization program should be held while inducting employees in which the job responsibilities, job functions, authorities and duties should be clearly defined as was stated in the fifth and sixth question relating to the factor authority and responsibility of the questionnaire.
- 4. Employees should feel that they are important for the organization and their contribution in the organization is being well appreciated as was stated in the seventh question relating to the factor authority and first and fourth question relating to the factor participation of the questionnaire.

Recommendations for improving Intellectual Property Rights

Intellectual property rights are important for any organization as these are the assets which are though intangible but bring in a lot of business. The Intellectual property rights of organization can be improved by:

1. Investing sufficiently in trademarks as stated in the thirteenth question relating to the factor

- intellectual property rights of the questionnaire. Trademarks of a company are nothing but the logo, symbols. All the organizations that formed part of this study like SBI, HDFC, DLF, Omaxe, TCS, Wipro have logos. The logo gives recognition to the organization and hence needs to be very carefully selected.
- 2. A clear cut strategy should be formulated in order to ensure creation and management of intellectual property rights as stated in the first question relating to the factor intellectual property rights of the questionnaire.
- 3. Clear cut procedures should be set for intellectual property rights management as stated in the second question of the factor intellectual property rights of the questionnaire.
- 4. The performance of the intellectual property rights portfolio should be monitored as stated in the third question of the factor intellectual property rights of the questionnaire.
- 5. Finance should be made available for intellectual property rights as without money none of the other steps can be achieved.
- Support from top management be made available for intellectual property rights as without the top management support nothing is possible.

Recommendations for improving Research and Development

- 1. Appropriate budget should be determined for research and development as stated in the fourth question relating to the factor research and development of the questionnaire.
- Top management support be made available for research and development as nothing is possible without top management support.
- 3. The company should continuously develop and reorganize itself based on R &D as stated in the second question of research and development factor of the questionnaire.

Recommendations for improving Business Reengineering

- 1. Systems, programs and procedures should be analyzed and regular efforts should be made in order to remove the steps which are of no use and lead to waste of time. This can be done by encouraging employees to continuously update the knowledge databases of the organization as has been stated in the third statement of the factor documentation in the questionnaire.
- 2. Employees who work on the systems should be asked to give suggestions and they should be involved in redesigning the systems as stated in the second question of the factor documentation of the questionnaire.
- 3. Change is the only constant and hence organizations should keep on learning, unlearning and relearning. Employees should be given opportunity to enhance their skills and help the organization develop. This can be inferred form the eighteenth question of the factor new ideas in the questionnaire.

Recommendations for improving Management Information System

All the managerial functions like planning, organizing, staffing directing and controlling require information of all sorts and so it is important that the right information is available to the right person at the right time, ensuring that significant information is maintained and can be retrieved as and when required is what management information system is all about. Management Information system can be improved in the following manner:

1. Information of all sorts like human resource, finance, and marketing should be maintained and backups should also be created, they should be available to employees as stated in the sixth question of the factor information system of the questionnaire.

- 2. Information systems should be integrated with each other as can be inferred from the seventh question of the factor information system of the questionnaire.
- 3. Information system should be leading edge as found in the tenth statement of the factor information system in the questionnaire.

Recommendations for improving Internal Control System

It is significant to have an internal control system in an organization to ensure that the organization is performing in accordance with the plans, and there are no major deviations. A good internal control system ensures a good structural capital in an organization. In order to ensure a good internal control system following points should be kept in mind:

- 1. All the employees should be well aware of the business philosophy as stated in the fifth question of the factor culture of the questionnaire. In case the employees only concentrate on their own job and do not see how their job adds value to the organization and contributes to achieving the organization vision and mission, there can be major losses incurred by the organization. Therefore, a well-coordinated system is what is essential for a good internal control system. No department and no employee should work in vacuum rather they should understand the broader picture.
- 2. The first and foremost step for controlling is measurement. If you cannot measure anything, you cannot control it. Thus, it is significant to measure the performance in all the fields, i.e., marketing, human resource management and finance etc. And measurement alone is of no use if records are not maintained of whatever is being measured. So, having an information system can be of great help and hence organizations should invest sufficiently in information system as stated in the second question of the factor information system of the questionnaire.

3. This information system should be very strong, as wrong information can be disastrous, a strong information system will help ensure that the internal control system is worthwhile. This has been inferred from the first question of the factor information of the questionnaire. Innumerable softwares are available for all the fields. For Human Resource, softwares like sage HRMS, Halogen, Kronos, Time Click, mindScope, TimeIPS, optimum HRIS, Synerion, mitrefinch, PeopleTrak, PDS, elogic Learning, Workday, greytip, peoplesoft, and ISGUS are available. For accounting softwares like Oracle, SAP, AccountMate, CYMA, Intacct, Red Wing TRAVERSE are available. In marketing there are softwares like Marketics, Market Smart 360, Lyris HQ, LIFT, Leadsius, and Lead Follow-Up. For finance softwares like pcFinancials, BusinessPLUS, FinPro, FMS II and PlumFAS are available. These softwares can be used.

REFERENCES

Alama, E. M. (2007). Intellectual Capital and business performance in professional service firms in Spain. Doctoral Thesis. Compultense University of Madrid, Madrid, Spain.

Amiri, A. N., Jandghi, G., Alvani, S. M., Hosnavi, R., & Majid, R. (2010). Increasing the intellecual capital in organization: Examining the role of organizational learning. European Journal of Sciences, 14(1), 98-107.

Aziz, A., Sharabati, A., Jawad, S. N., & Bontis, N. (2010). Intellectual capital and business performance in the pharmaceutical sector of Jordon. Management Decision, 48(1), 105 131

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in Social Psychological Research: conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.

Bontis, N. (1996). There's a price on your head: managing intellectual capital strategically. Ivey Business Journal (Formerly Business Quarterly), 60(4), 40-47.

Bontis, N. (1998). Intellectual Capital: an exploratory study that develops measures and models. Management Decision, 36(2), 63-76

Browne, M. W., & Cuddeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21(2), 230-258.

Byrne, B. M. (1998). Structural equation modeling with Lisrel,

Prelis and Simplis: Basic concepts, applications and programing. Mahwah, NJ: Lawrence Erlbaum Associates.

Camison, C., Palacios, D., & Devece, C. (2000). A new model for measuring intellectual capital in the enterprise: Nova Model. Oviedo Congress TDCA.

Carson, E., Ranzijn, R., Winefield, A., & Marsden, H. (2004). Intellectual Capital. Mapping Employee and Work Group Attributes. Journal of Intellectual Capital, 5(3), 443-463. doi:http://dx.doi.org/10.1108/14691930410550390

Diamantopoulos, A., & Siguaw, J. A. (2000). Introducing Lisrel. London: Sage.

Edvinsson, L. (1997). Developing Intellectual Capital at Skandia. Longe Range Planning, 30(3), 336-373.

Engel, K. S., Moosbrugger, & Muller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness of fit measures. Methods of Psychological Research online, 8(2), 23-74.

Essays, UK. (November 2013). Structural Capital A Theoretical Construct Business Essay. Retrieved from http://www.ukessays.com/essays/business/structural-capital-a-theoretical-construct-business-essay.php?cref=1

Euroforum. (1998). Intellect Project, Mesuring Intellectual Capital. Madrid, Spain: University Institute Euroforum Escorial.

Gaskin, J. (2012). Retrieved January 11, 2014, from http://stawiki.kolobkreations.com/wiki/Main_Page

Hair, J. F., Black, W., Babin, B., & Anderson, R. (2010). Multivariate Data Analysis (7th ed.). Inc. Upper Saddle River, NJ: Prentice Hall.

Hair, J., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis (4th ed.) Upper Saddle River, NJ: Prentice Hall.

Hu, L. T., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling, 6(1), 1-55.

Human Factors International, United Kingdom. (2011). An Introduction to the Organisational Culture Questionnaire (OCQ). Retrieved January 10, 2013, from www.hfi.com: http://joomla.hfi.com/images/ocq%20sample%20report%20sh ort%20ver.pdf

Joreskog, K. G., & Sorbom, D. (1989). LISREL 7 A Guide to the Program and Applications. Chicago: SPSS.

Kline, R. B. (2004). Principles and practices of structural equation modeling (2nded.). New York: Guildford.

Kogut, B., & Zander, U. (1996). What firms do? Coordination, Identity and learning. Organization Science, 7(5), 502-518.

Lundberg, D. (2012, September 21). Retrieved November 30, 2012, from https://lundbergdaniel.wordpress.com

MacCullum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample Size in factor analysis. Psychological Methods, 4(1), 84-99.

Maddocks, J., & Beaney, M. (2002). See the invisible and intangible. Knowledge Management. pp 16-17.

Mulaik, S. A., James, L. R., Van Alstine, J., Bennet, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness of fit Indices for structural equation models. Psychological Bulletin, 105(3), 430-445

Ordonez de Pablos, P. (2004). Organizational structural capital as a source of corporate competitiveness indicators study of industrial economics. Industrial Economics, 357, 131-140.

Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design and analysis: An integrated approach. Hillsdale, NJ: Erlbaum.

Sofian, S., Tayles, M., & Richard, P. (2005). The implications of intellectual capital on performance measurement and corporate performance. Retrieved April 29, 2012, from http://www.researchgate.net/publication/41822846_The_implications_of_intellectual_capital_on_performance_measurement_and_corporate_performance

Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics. Boston: Pearson Education.

Topal, Y., Conkar, M. K., & Mustafa, U. C. (2008). The constitution and measurement of intellectual capital: an application in the banking sector in Afyonkarahisar. Paper presented at the First International Conference on Management and Economics, Epoka University, Turkey.

Youndt, M. A., & Snell, S. A. (2004). Human resource configurations, intellectual capital, and organizational prformance. Journal of Managerial Issues, 16(3), 337-360. Retrieved from http://www.thefreelibrary.com/Human+resource+configurations%2c+intellectual+capital%2c+and...-a0124419547

BRIEF PROFILE OF THE AUTHORS

Arpita Kaul, PhD., is Assistant Professor at the Department of Commerce, Sri Venkateswara College, University of Delhi, India. She has done Ph.D. on "Structural Capital: A Study of Select Organizations" from the Department of Management Studies, Jagannath University, Jaipur, India. She did MCom from Ramjas College, University of Delhi, India, B.Com Honours from Daulat ram College, University of Delhi, India and Bachelors of Education from Central Institute of Education, University of Delhi. She has more than eight half years of teaching and research experience. Her research papers have been published in reputed journals like Acta Oeconomica et informatica (Slovak university of Agriculture in Nitra, Slovak Republic); Effulgence (RDIAS, India); Journal of Economic and Business (Gunadarma University, Indonesia); Amity Business Review; International Journal of Business Insights and Transformation, India. Her areas of interest are human resource management and entrepreneurship. She has been awarded gold medal twice by Szentlstvan University, Godollo, Budapest, Hungary.

Prof. Ajay Kumar Singh is Vice Chancellor of Sri Sri University, Cuttack, Odisha, w.e.f. May 10, 2019. He is on leave from the post of Professor at Department of Commerce, Faculty of Commerce & Business, Delhi School of Economics, University of Delhi. He has served as Dean (Works), DU, OSD, University Press, DU, Head, Graphic Arts Centre, University of Delhi.

Dr. Singh has 32+ years of teaching experience in all with 207 Publications including 10 books, 1 International Monograph, 105 research papers, 12 articles, 16 case studies, 52 editorial reviews, 2 abstracts, and 8 book reviews published in leading journals (Emerald's TLO & Social Responsibility Journal, Inderscience- IJBIS, Spriner's Current Psychology, Scientific Journal ACTA OPERATIVO OECONOMICA, Slovak Republic, ACTA OECONOMICA PRAGENSIA, Agricultural Economics – Czech, IJ of Bus. & Mgt. Studies, Turkey, etc. (including two GOLD MEDALS for best paper awards, two best paper awards, two silver medal winning papers, and two 2nd best papers). His total citations are 325 with h index of 9 and i 10 index of 8 as on June 2, 2019 as per Google Scholar Citations.

Dr. Singh was conferred by Indian Commerce Association (ICA), BEST BUSINESS ACADEMIC OF THE YEAR (BBAY) AWARD – 2011 GOLD MEDAL & MMSM Research Award 2011& 2012 GOLD MEDAL.

Dr. Singh (school topper, SRCC Alumnus, Editor-in-Chief: Delhi Business Review) has earned best teacher award for two consecutive years in 1998 and 1999 at IAMT. 12 International Awards and Distinctions have been conferred including 2 Gold Medals, 1 Silver Medal, and Other Distinctions.

35 Scholars have been awarded Ph. D. degree, and 8 are pursuing Ph. D. under his supervision.

Dr. Singh served as Vice Chancellor of University of Jazeera, Dubai, UAE and has travelled to 23 countries and addressed in more than 200 conferences/seminars/workshops/training programs.

Dr. Singh is Fellow and Managing Trustee of Indian Commerce Association (ICA), Immediate Past President of Indian Commerce Association Delhi NCR Chapter, Immediate Past President of Indian Association for Management Development (IAMD), Hony. President of Governing Body of Divine Group of Institutions, DSPSR, and many NGOs.

Annexure 1

	Table No. 5 Total Variance Explained												
Component		Initial Eigenva	alues	Extracti	on Sums of Squ	ared Loadings	Rotatio	Rotation Sums of Squared Loadings					
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %				
1	28.574	34.426	34.426	28.574	34.426	34.426	15.352	18.497	18.497				
2	8.442	10.172	44.598	8.442	10.172	44.598	11.192	13.484	31.981				
3	4.125	4.970	49.568	4.125	4.970	49.568	8.416	10.139	42.120				
4	3.003	3.618	53.186	3.003	3.618	53.186	5.522	6.653	48.773				
5	2.841	3.423	56.610	2.841	3.423	56.610	3.502	4.219	52.992				
6	2.129	2.565	59.174	2.129	2.565	59.174	3.006	3.621	56.613				
7	1.995	2.404	61.578	1.995	2.404	61.578	2.977	3.587	60.200				
8	1.775	2.139	63.717	1.775	2.139	63.717	2.919	3.517	63.717				
9	1.630	1.964	65.682										
10	1.400	1.687	67.369										
11	1.315	1.584	68.953										
12	1.182	1.424	70.377										
13	1.149	1.384	71.761										
14	1.073	1.292	73.053										
15	0.976	1.176	74.229										
16	0.945	1.139	75.367										
17	0.878	1.058	76.425										
18	0.810	0.976	77.401										
19	0.783	0.944	78.345										
20	0.770	0.927	79.273										
21	0.713	0.859	80.132										
22	0.697	0.839	80.971										
23	0.669	0.806	81.777										
24	0.635	0.765	82.542										
25	0.606	0.731	83.273										
26	0.592	0.713	83.986										
27	0.568	0.684	84.670										
28	0.548	0.661	85.331										
29	0.541	0.652	85.983										
30	0.509	0.613	86.596										
31	0.477	0.575	87.171										
32	0.470	0.566	87.737										

Component		Initial Eigenva	alues	Extracti	on Sums of Squ	uared Loadings	Rotation Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
33	0.455	0.548	88.285							
34	0.441	0.531	88.816							
35	0.421	0.507	89.323							
36	0.409	0.493	89.816							
37	0.394	0.475	90.291							
38	0.392	0.472	90.763							
39	0.362	0.436	91.199							
40	0.355	0.427	91.627							
41	0.339	0.408	92.035							
42	0.327	0.394	92.429							
43	0.323	0.389	92.818							
44	0.303	0.365	93.183							
45	0.294	0.354	93.537							
46	0.279	0.336	93.873							
47	0.277	0.333	94.206							
48	0.264	0.319	94.525							
49	0.251	0.302	94.827							
50	0.239	0.288	95.116							
51	0.239	0.288	95.403							
52	0.220	0.265	95.668							
53	0.219	0.263	95.931							
54	0.210	0.253	96.184							
55	0.204	0.246	96.430							
56	0.188	0.226	96.655							
57	0.182	0.219	96.874							
58	0.181	0.218	97.092							
59	0.168	0.202	97.294							
60	0.161	0.194	97.487							
61	0.155	0.187	97.674							
62	0.149	0.179	97.853							
63	0.140	0.168	98.022							
64	0.137	0.165	98.187							
65	0.129	0.155	98.342							
66	0.124	0.149	98.491							

Component		Initial Eigenva	alues	Extract	ion Sums of Squ	ared Loadings	Rotation Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
67	0.111	0.134	98.625							
68	0.110	0.133	98.758							
69	0.105	0.126	98.884							
70	0.101	0.122	99.006							
71	0.096	0.115	99.122							
72	0.091	0.109	99.231							
73	0.089	0.108	99.339							
74	0.079	0.096	99.434							
75	0.075	0.090	99.524							
76	0.066	0.079	99.603							
77	0.065	0.078	99.681							
78	0.055	0.066	99.748							
79	0.050	0.061	99.808							
80	0.048	0.058	99.867							
81	0.043	0.052	99.919							
82	0.038	0.046	99.965							
83	0.029	0.035	100.000							
Extraction Me	ethod: Pri	ncipal Compone	nt Analysis.							

Annexure 2

Table No. 6 Rotated Component Matrix ^a											
	Component										
	1	2	3	4	5	6	7	8			
System5						0.612					
System7											
System6											
System8			0.504								
System10								0.724			
System11								0.795			
System12								0.825			
Systen14			0.707								
System15			0.602								
R1				0.764							
R2				0.642							

	Component									
	1	2	3	4	5	6	7	8		
R3				0.655						
R4				0.694						
R5										
R6						0.637				
R7						0.565				
R8						0.525				
R9										
R10										
IP1		0.852								
IP2		0.874								
IP3		0.865								
IP4		0.805								
IP5		0.804								
IP6		0.832								
IP7		0.842								
IP8		0.843								
IP9		0.812								
IP10		0.799								
IP11		0.829								
IP12		0.687								
IP13		0.760								
IP14		0.687								
IP15		0.645								
IS1			0.736							
IS2			0.803							
IS4			0.711							
IS5			0.575							
IS6							0.641			
IS7							0.650			
IS10							0.557			
C5	0.549									
C6			0.584							
C7			0.643							
C8			0.578							

	Component									
	1	2	3	4	5	6	7	8		
C9										
C10				0.517						
LO3							0.533			
LO6			0.576							
LO7										
NI4										
NI5	0.538									
NI9	0.568									
NI10	0.601									
NI11	0.573									
NI14	0.611									
NI16	0.600									
NI18					0.519					
D1										
D2					0.695					
D3					0.646					
D4										
Strategy1	0.514									
Communication6	0.594									
Communication7	0.786									
Communication9	0.628									
AR2	0.684									
AR3	0.691									
AR4	0.716									
AR5	0.670									
AR7	0.726									
AR8	0.651									
AR9	0.539									
AR10	0.533									
PR1	0.677									
PR2	0.743									
PR3	0.602									
PR4	0.643									
PR5	0.682									

	Component										
	1	2	3	4	5	6	7	8			
PR7	0.711										
PR8	0.697										
PR9	0.645										
NI2	0.505										

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 10 iterations.

