

Important Instructions

- 1. The Answer Sheet is inside this test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **side-1** and **side-2** carefully with **blue/black** ball point pen only.
- 2. The Test is of **3 hours** duration and Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are **720**.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **GG**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklets and the Answer Sheets.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 9. Each Candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet the second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance sheet.

Name of the C	Candidate (in Capital Letters):		
Roll Number	: in figure		
	: in words		
Centre of Exar	nination (in Capitals):		
Candidate's Si	gnature :	Invigilator's Signature	
Fascimile sign	ature stamp of Centre superintendent_		

1.	Offs	sets are produced I	οу					
	(1)	Parthenocarpy	(2)	Parthenogenesis	(3)	Mitotic divisions	(4)	Meiotic divisions
Sol:	[3]							
2.	The	experimental prod	of for	semiconservative	repl	ication of DNA wa	as fir	st shown in a
		Plant	(2)	Virus	(3)	Bacterium	(4)	Fungus
Sol:								
3.		ct the <i>correct</i> mate						
	(1)			Pisum'sativun and				
	(2)	Francois Jacob an	d Jac	cques Monod – La	c ope	eron		
	(3)	_		1artha Chase – TM				
	(4)	Alec Jeffreys – St	repto	coccus pneumonia	a			
Sol:								
4.	Whi		•	rs is wrongly mat		?		
	(1)	3.		ation : Grasshopp	er			
	(2)	T.H. Morgan : Lir	nkag	е				
	(3)	ABO blood group	Ţ					
	(4)	Starch synthesis i	n pea	a : Multiple alleles		· '	1	
Sol:	[4]							
5.		ct the correct state						
	(1)	Spliceosomes take						
	(2) (3)			covered by S. Altmeveloped by a Briti		cientist		
	(4)			the term "linkage			AF	
Sol:	, , ,	JMPEI						
6.	Wh	ich of the following	g has	proved helpful in	pres	serving pollen as fo	ossils	?
	(1)	Oil content	(2)	Sporopollenin	(3)	Cellulosic intine	(4)	Pollenkitt
Sol:								
7.			_	wers only once in i			(4)	D 1
Sol:		Mango	(2)	Papaya	(3)	Jackfruit	(4)	Bamboo species
301. 8.		correct order of st	ens i	in Polymerase Cha	nin R	eaction (PCR) is		
•		Denaturation, Ex	•	•		Denaturation, Ar	neal	ing, Extension
	(3)	Annealing, Exten		· ·		Extension, Denat		•
Sol:	[2]							
9.		ndia, the organisati anisms for public u			sing	the safety of introd	ucing	genetically modified
	(1)	Research Commit	tee c	on Genetic Manipu	ulatic	on (RCGM)		
	(2)	Genetic Engineer	ng A	Appraisal Committ	ee (C	GEAC)		
	(3)	Council for Scien	tific a	and Industrial Res	earcl	h (CSIR)		
	(4)	Indian Council of	Med	dical Research (ICI	MR)			
Sol:	[2]							

10.		ich of the followir nan lymphocytes?	ig is	commonly used a	as a	vector for introd	ucing	a DNA fragment in
	(1)	λ phase	(2)	pBR 322	(3)	Ti plasmid	(4)	Retrovirus
Sol:	[4]							
11.		of bioresources by concerned country				nd organisations \	witho	ut authorisation from
	(1)	Biodegradation	(2)	Bioexploitation	(3)	Biopiracy	(4)	Bio-infringement
Sol:	[3]							
12.		new' variety of rice sent in India for a l				company, thoug	h suc	h varieties have been
	(1)	Lerma Rajo	(2)	Basmati	(3)	Sharbati Sonora	(4)	Co-667
Sol:	[2]							
13.	Sele	ct the <i>correct</i> mat	ch					
	(1)	T.H. Morgan – Tr	ansc	duction	(2)	G. Mendel – Tra	nsfori	mation
	(3)	F ₂ × Recessive par	ent -	– Dihybrid cross	(4)	Ribozyme – Nuc	leic a	cid
Sol:	[4]							
14.	Wh	ich of the following	g is t	rue for nucleolus ?	?		1	
	(1)	It takes part in sp	indle	e formation.				
	(2)	It is a site for activ	∕e, ri	bosomal RNA syn	thesi	S.		
	(3)	It is a membrane-	bour	nd structure.				OD
	(4)	Larger nucleoli ar	e pre	esent in dividing c	ells,			UK
Sol:	[2]	ALDET		TIX/E E		A N / TN 1	٨٢	
15.	The	Golgi complex pa	rticip	oates in		AIVIII		HONS
	(1)	Respiration in ba	cteria	a	(2)	Activation of am	ino a	cid
	(3)	Formation of secr	etory	vesicles	(4)	Fatty acid break	down	
Sol:	[3]							
16.	Wh	ich of the following	g is r	not a product of lig	ght re	eaction of photosy	nthes	sis ?
	(1)	NADPH	(2)	Oxygen	(3)	NADH	(4)	ATP
Sol:	[3]							
17.	Wh	ich among the follo			ote?			
	(1)	Nostoc	(2)	Oscillatoria	(3)	Mycobacterium	(4)	Saccharomyces
Sol:		matal manyamantia	not	offootod by				
18.		matal movement is O_2 concentration		-	(3)	Liaht	(1)	Temperature
Sol:			(2)	CO ₂ concentration	(3)	Ligitt	(4)	remperature
		two functional gr	oups	characteristic of s	ugar	s are		
		carbonyl and pho			J	(2)	cark	onyl and hydroxyl
		carbonyl and met	•			(4)		lroxyl and methyl
Sol:	[2]							

20.	The	stage during which	:h se	paration of the pai	red f	nomologous chrom	osor	nes begins is
	(1)	Diakinesis	(2)	Zygotene	(3)	Diplotene	(4)	Pachytene
Sol:	[3]							
21.	Stor	mata in grass leaf a	are					
	(1)	Rectangular	(2)	Barrel shaped	(3)	Kidney shaped	(4) I	Dumb-bell shaped
Sol:	[4]							
22.	Wh	ich one is wrongly	mat	tched?				
	(1) Gemma cups - N	/larcl	hantia		(2) Unicellular	orga	nism - Chlorella
	(3	3) Biflagellate zoosp	oores	s - Brown algae		(4) Uniflagellat	e gaı	metes - Polysiphonia
Sol:	[4]							
23.	Mat belo	•	in C	olumn I with those	in C	Column I1 and selec	ct the	e correct option giver
		Column I		Column II				
	a. b.	Herbarium Key	i. ii.	A list that enumer	ates	•	e spe	plants and animals ecies found in an area
	c. N	1useum	iii.	Is a place where sheets are kept.	dried	d and pressed plar	ıt spe	ecimens mounted or
	d. (Catalogue	iv.			a list of characters a cation of various ta		heir alternates which
	(1)	aMPET	b iv	TIVE E	c iii	AMIN	d i	TIONS
	(2)	iii	iv		i		ii	
	(3)	iii	ii		i		iv	
	(4)	i	iv		iii		ii	
Sol:	[2]							
24.	Wir	nged pollen grains	are p	oresent in				
	(1)	Mango	(2)	Pinus	(3)	Cycas	(4)	Mustard
Sol:	[2]							
25 .	Afte	er karyogamy follo	wed	by meiosis, spores	are	produced exogeno	usly	in
	(1)	Agaricus	(2)	Saccharomyces	(3)	Alternaria	(4)	Neurospora
Sol:								
26.		gen is not produce	ed di	uring photosynthe	sis by			
		Cycas			(2)	Chara		
	(3)	Nostoc			(4)	Green sulphur ba	cteri	a
Cal-	Γ <i>1</i> 1							

27.	Dou	uble fertilization is									
	(1)	Fusion of two male	gan	netes with one egg							
	(2) 5	Syngamy and triple	e fus	ion							
	(3)	Fusion of one male	gan	nete with two pola	r nu	clei					
	(4)	Fusion of two male	gan	netes of a pollen tu	ıbe v	vith two different e	ggs				
Sol:	[2]										
28.	Wh	ich of the following	g ele	ments is responsib	le fo	r maintaining turgo	or in	cells?			
	(1)	Potassium	(2)	Calcium	(3)	Sodium	(4)	Magnesium			
Sol:	[1]										
29.	Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?										
	(1)	Banana	(2)	Viola	(3)	Yucca	(4)	Hydrilla			
Sol:	[3]										
30.	Pollen grains can be stored for several years in liquid nitrogen having a temperature of										
	(1)	– 196°C	(2)	– 160°	(3)	- 80°	(4)	– 120°			
Sol:	[1]										
31.	Wh	at is the role of NA	λD⁺ i	n cellular respirati	on ?						
	(1)	It is a nucleotide s	sour	ce for ATP synthes	is.		-	UK			
	(2)	It is the final elec	tron	acceptor for anaer	obic	respiration.	Δ				
	(3)	It functions as an	elec	tron carrier.							
	(4)	It functions as an	enz	yme.							
Sol:	[3]										
32.	In v	vhich of the follow	ing f	forms is iron absor	bed	by plants?					
	(1)	Free element			(2)	Both ferric and fe	rrou	S			
	(3)	Ferrous			(4)	Ferric					
Sol:	[4]										
33.	Nic	he is									
	(1)	the range of temp	eratı	ure that the organi	sm ı	needs to live					
	(2)	the functional role	e pla	yed by the organis	m v	here it lives					
	(3)	the physical space	e wh	ere an organism li	ves						
	(4)	all the biological f	acto	rs in the organism	's er	vironment					
Sol:	[2]										

34.	VVII	ich of the followin	ig is a	i secondary pondi	anı ?			
	(1)	SO ₂	(2)	O_3	(3)	CO ₂	(4)	CO
Sol:	[2]							
35 .	Nat	ality refers to						
	(1)	Number of indiv	iduals	s leaving the habit	at			
	(2)	Number of indiv	iduals	s entering a habita	ıt			
	(3)	Birth rate						
	(4)	Death rate						
Sol:	[3]							
36.	Wo	rld Ozone Day is	celebr	rated on				
	(1)	16 th September	(2)	22 nd April	(3)	21st April	(4)	5 th June
Sol:	[1]							
37.	Wh	at type of ecologic	al py	ramid would be o	btair	ned with the follow	ving	data?
		Secondary consu	mer :	120 g				
		Primary consume	er : 60) g				
		Primary produce	r : 10					
		Upright pyramid		umbers	(2)	Upright pyramid		
		Pyramid of energ	Jy		(4)	Inverted pyramic	l of b	piomass
Sol:		NSI					7	OR
38		tratosphere, which ase of molecular o			nts a	cts as a catalyst in	degr	radation of ozone and
	(1)			Oxygen	(3)	CI	(4)	Carbon
Sol:	[3]							
39.	Cas	parian strips occu	r in					
	(1)	Cortex	(2)	Endodermis	(3)	Pericycle	(4)	Epidermis
Sol:	[2]							
40.	Pla	nts having little or	no se	econdary growth a	are			
	(1)	Conifers			(2)	Cycads		
	(3)	Deciduous angio	spern	าร	(4)	Grasses		
Sol:	[4]							
41.	Pne	umatophores occu	ır in					
	(1)	Carnivorous plan	nts		(2)	Submerged hydro	ophy	tes
	(3)	Free-floating hyd	lroph	ytes	(4)	Halophytes		
Sol:			11.6					
42.		eet potato is a mod		Dh.'	(0)	A ale and 1111	. / 4\	Charry
Cal	(1) [3]	Tap root	(2)	Rhizome	(3)	Adventitious roof	t (4)	Stem
	1.51							

NEET EXAM-2018-QUESTION AND SOLUTIONS CODE-GG 43. Which of the following statements is correct? (1) Horsetails are gymnosperms (2) Stems are usually unbranched in both Cycas and Cedrus. (3) Selaginella is heterosporous; while Salvinia is homosporous. (4) Ovules are not enclosed by ovary wall in gymnosperms. Sol: [4] **44.** Select the **wrong** statement : (1) Pseudopodia are locomotory and feeding structures in Sporozoans. (2) Mitochondria are the powerhouse of the cell in all kingdoms except Monera. (3) Mushrooms belong to Basidiomycetes. (4) Cell wall is present in members of Fungi and Plantae. Sol: [1] **45.** Secondary xylem and phloem in dicot stem are produced by (1) Phellogen (2) Axillary meristems (3) Vascular cambium (4) Apical meristems Sol: [3] 46. Match the items given in Column I with those in Column II and select the correct option given below: Column I Column II Glycosuria i. Accumulation of uric acid in joints Mass of crystallised salts within, the kidney Gout ii. Renal calculi Inflammation in glomeruli C. iii. Presence of glucose in nephritis urine Glomerular iv. a b С (1) (2) (3) i ii iii İν ii (4) iii ίV Sol: [2] 47. Match the items given in Column I with those in Column I1 and select the correat option given below: Column I (Eunstion) Column 11(Part of Excretory System)

		Column I (Functi	on)		Column 11(Part of Excretory Syste
	a.	Ultrafiltration		i.	Henle's loop
	b.	Concentration of	urine	ii.	Ureter
	C.	Transport of urin	е	iii.	Urinary bladder
	d.	Storage of urine		iv.	Malpighian corpuscle
				V.	Proximal convoluted tubule
		a	b	С	d
	(1)	V	iv	i	ii
	(2)	V	iv	i	iii
	(3)	iv	i	ii	iii
	(4)	iv	V	ii	iii
١.	[2]				

Sol: [3]

48.	Am	ong the following	sets	of examples for di	verg	ent evolution, sele	ct the incorrect option :
	(1)	Brain of bat, man	anc	d cheetah	(2)	Eye of octopus, b	at and man
	(3)	Heart of bat, mar	and	d cheetah	(4)	Forelimbs of mar	n, bat and cheetah
Sol:	[2]						
49.	Wh	ich of the following	g is ı	not an autoimmun	e dis	sease?	
	(1)	Alzheimer's disea	ise		(2)	Vitiligo	
	(3)	Rheumatoid arth	ritis		(4)	Psoriasis	
Sol:	[1]						
50 .	Wh	ich of the followin	g ch	aracteristics repres	ent '	Inheritance of bloc	od groups' in humans?
	a.	Dominance	b.	Co-dominance	C.	Multiple allele	
	d.	Incomplete domi	nanc	e	e.	Polygenic inherit	ance
	(1)	b, d and e	(2)	a, c and e	(3)	a, b and c	(4) b, c and e
Sol:	[3]						
51.	Cor	nversion of milk to	curc	d improves its nutr	rition	al value by increas	sing the amount of '
	(1)	Vitamin B ₁₂	(2)	Vitamin E	(3)	Vitamin A	(4) Vitamin D
Sol:	[1]						
52 .	The	similarity of bone	stru	cture in the forelin	nbs c	of many vertebrate	s is an example of
	(1)	Convergent evolu	ıtion		(2)	Adaptive radiation	on'
	(3)	Analogy			(4)	Homology	
Sol:	[4]	NSI					
53 .		vhich disease does sels?	mos	quito transmitted p	atho	gen cause chronic i	nflammation of lymphatic
	(1)	Ringworm diseas	е		(2)	Amoebiasis	
	(3)	Ascariasis			(4)	Elephantiasis	
Sol:	[4]						
54.	Wh	ich of the following	g an	imals does not und	dergo	metamorphosis?	
	(1)	Moth	(2)	Starfish	(3)	Tunicate	(4) Earthworm
Sol:	[4]						
55 .	Wh	ich one of these an	ima	ls is not a homeoth	nerm	?	
	(1)	Camelus	(2)	Psittacula	(3)	Chelone	(4) Macropus
Sol:	[3]						
56 .	Wh	ich of the following	g'fea	tures is used to ide	entify	a male cockroach	from a female cockroach?
	(1)	Forewings with o	larke	er tegmina			
	(2)	Presence of anal	cerci				
	(3)	Presence of cauda	ıl sty	rles.			
	(4)	Presence of a boa	t sha	aped sternum on tl	he 9 th	abdominal segme	ent
Sol:	[3]						

57 .	Wh	ich of the followin	g organisms are know	n as	chief producers in	the c	oceans?
	(1)	Cyanobacteria	(2) Euglenoids	(3)	Diatoms	(4)	Dinoflagellates
Sol:	[3]						
58.	Cilia	ates differ from all	other protozoans in				
	(1)	using pseudopod	ia for capturing prey				
	(2)	having two types	of nuclei				
	(3)	having a contract	ile vacuole for removi	ng ex	cess water		
	(4)	using flagella for	locomotion				
Sol:	[2]						
59.	Ider syst	-	e group of animals ch	naract	erized by crop and	d giz	zzard in its digestive
	(1)	Aves	(2) Osteichthyes	(3)	Reptilia	(4)	Amphibia
Sol:	[1]						
60.	Hor	mones secreted by	the placenta to main	tain p	regnancy are		
	(1)	hCG, hPL, proges	stogens, estrogens				
	(2)	hCG, progestoger	ns, estrogens, glucocor	ticoic	Is		
	(3)	hCG, hPL, estrog	ens, relaxin, oxytocin				
		hCG, hPL, proges	stogens, prolactin				
Sol:		TOE					
61.		contraceptive 'SA	HELI'	J		┥`	
	(1)	is an IUD.				_ A F	
	(2)	is a post-coital co					HUNS
	(3)		centration of estrogen				
	(4)	Blocks estrogen re	eceptors in the uterus,	prev	enting eggs from g	ettin	g implanted
Sol:				1.6			
62.			nalian' embryo is deriv				
	(1)	mesoderm and tr	•	• •	ectoderm and end		
C-1	(3)	endoderm and m	esoderm	(4)	ectoderm and me	sode	erm
Sol:		difference between					
63.			n spermiogenesis and	-			
	(1)		s spermatozoa from ser spermiation spermato			tne (cavity of seminiferous
	(2)		s spermatozoa are form into the cavity of semi		•	ı spei	rmatozoa are released

Amity Institute for Competitive Examinations : Phones: 24336143/44, 25573111/2/3/4, 95120-2431839/42

Sol: [2]

(3) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.(4) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.

64. In a growing population of a country,

(1) reproductive and pre-reproductive individuals are equal in number.

	(2)	pre-reproductive individuals are less than the reproductive individuals.									
	(3)	reproductive indi	vidu	als are less than th	e po	st-reproductive inc	divid	uals.			
	(4)	pre-reproductive	indiv	viduals are more th	nan t	he reproductive in	divid	duals.			
Sol:	[4]										
65 .	Whi	ich part of poppy	plant	is used to obtain	the c	drug "Smack" ?					
	(1)	Roots	(2)	Leaves	(3)	Latex	(4) F	lowers			
Sol:	[3]										
66.		ch the items giver en below :	n in	Column 1 with the	ose i	n Column 'I1 and	sele	ct the correct option			
		Column I		Column II							
	a.	Eutrophication	i.	UV-B radiation							
	b.	Sanitary landfill	ii.	Deforestation							
	C.	Snow blindness	iii.	Nutrient enrichm	ent						
	d.	Jhum cultivation	iv.	Waste disposal							
		a	b		С	FE F	d	OR			
	(1)		iv		į,		ii _				
	(2)	JMPEI	ii	IIVEE	iv	AMIN.	III	HONS			
	(3)	i	iii		iv		ii				
	(4)	ii	i		iii		iv				
Sol:	[1]										
67.		ich one of the follo duction of antibiot		9	actio	ns is widely used i	in m	edical science for the			
	(1)	Parasitism	(2)	Amensalism	(3)	Mutualism	(4)	Commensalism			
Sol:	[2]										
68.	All	of the following ar	e ind	cluded in 'Ex-situ o	onse	ervation' except					
	(1)	Botanical gardens	s (2)	Seed banks	(3)	Sacred groves	(4)	Wildlife safari parks			
Sol:											
69.				_		o in erythropoiesis					
Cal.	(1)	Goblet cells	(2)	Parietal cells	(3)	Mucous cells	(4)	Chief cells			
Sol:	[2]										

70.	Mat belo	•	'in C	Column I with those in Column II and select the correct option giv	er
		Column I		Column II	
	a.	Fibrinogen	i.	Osmotic balance	
	b.	Globulin	ii.	Blood clotting	
	C.	Albumin	iii.	Defence mechanism	
		a	b	С	
	(1)	i	iii	ii	
	(2)	ii	iii	İ	
	(3)	i	ii	iii	
	(4)	iii	ii	i	
Sol:	[2]				
71.	Cald	cium is important	in sk	keletal muscle contraction because it	
	(1)	detaches the myo	sin h	nead from the actin filament	
	(2)	prevents the form	atior	n of bonds between the myosin cross bridges and the actin filame	nt
	(3)	•		ATPase by binding to it.	
	(4)	3		emove the masking of active sites on actin for myosin.	
Sol:	` '	binds to troporiir	10 10	emove the masking of active sites of actin for myosin.	
72.		ich of the following	a ic	an occupational respiratory disorder?	
12.		Botulism	(2)	Emphysema (3) Silicosis (4) Anthracis	
Cal-	` '	Botunsin	(2)	Emphysema (3) Sincosis (4) Antinacis	
Sol:		iah of the fallowin		Labella Harrier FOR	
/3				an amino acid derived hormone?	
	(1)	Estradiol	(2)	Estriol (3) Ecdysone (4) Epinephrine	
Sol:					
74.	Wh	ich of the following	g str	ructures or regions is incorrectly paired with its function?	
	(1)	Hypothalamus	:	production of releasing hormones and regulation of temperatu hunger and thirst.	re
	(2)	Corpus callosum	:	band of fibers connecting left and right cerebral hemispheres.	
	(3)	Limbic system	:	consists of fibre tracts that interconnect different regions of bra controls movement.	in
	(4)	Medulla oblongat	a :	controls respiration and cardiovascular reflexes.	
Sol:	[3]				
75 .	Wh	ich of the following	g hoi	rmones can play a significant role in osteoporosis?	
	(1)	Estrogen and Par	athy	roid hormone	
	(2)	Parathyroid horm	one	and Prolactin	
	(3)	Progesterone and			
	(4)	Aldosterone and			
	(ゴ)	, adopter only and		don't	

Sol: [1]

76. The transparent lens in the human eye is held in its place by

	(1)	smooth muscles a	ittach	ned to the iris	(2)	smooth muscles attached	to the ciliary body
	(3)	ligaments attache	d to	the iris	(4)	ligaments attached to th	e ciliary body
Sol:	[4]						
77.		ich of the followi ohysema, respectiv	_		epre	esents the lung conditio	ns in asthma and
	(1)	Increased respira	tory	surface; Inflammat	tion	of bronchioles.	
	(2)	Decreased respira	atory	surface; Inflamma	ition	of bronchioles	
	(3)	Increased number	r of l	oronchioles; Increa	sed i	respiratory surface	
	(4)	Inflammation of I	oron	chioles; Decreased	resp	iratory surface	
Sol:	[4]						
78.	Mat belo	•	in C	olumn I with those	in C	Column II and select the c	orrect option given
		Column I		Column II			
	a.	Tricuspid valve	i.	Between left atriu	m a	nd left ventricle	
	b.	Bicuspid valve	ii.	Between right ver	ntric	e and pulmonary artery	
	C.	Semilunar valve	iii.	Between right atr	ium	and right ventricle	
		a	b		С		
	(1)	i	ii		iii		
	(2)	KTQ7	i ·		iii	re e)D
	(3)		iii -		ii –		
Sol:	(4) [4]	JMPE1	'I'	TIVE E	İİ	AMINAT	IONS
79 .	Mat belo		in C	olumn I with those	in C	Column II and select the c	orrect option given
		Column I				Column II	
	a.	Tidal volume			i.	2500 – 3000 mL	
	b.	Inspiratory Reserv	ve vo	olume	ii.	1100 – 1200 mL	
	C.	Expiratory Reserv	ve vo	lume	iii.	500 – 550 mL	
	d.	Residual volume			iv.	1000 – 1100 mL	
		a	b		С	d	
	(1)	i	iv		ii	iii	
	(2)	iv	iii		ii	i	
	(3)	iii	i		iv	ii	
	(4)	iii	ii		i	iv	
Sol:	[3]						

80 .	Niss	NissI bodies are mainly composed of							
	(1)	Nucleic acids and SER	(2)	Free ribosomes and RER					
	(3)	DNA and RNA	(4)	Proteins and lipids					
Sol:	[2]								
81.	Whi	Which of these statements is incorrect ? (1) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.							
	(1)								
	(2)	Glycolysis occurs in cytosol.							
	(3)								
	(4)								
Sol:	[2]								
82.		ny ribosomes may associate with a single mRNA to form multiple copies of a polypeptide nultaneously. Such strings of ribosomes are termed as							
	(1)	Plastidome (2) Nucleosome	(3)	Polyhedral bodies (4) Polysome					
Sol:	[4]								
83.	Whi	nich of the following terms describe human dentition?							
	(1)	Pleurodont, Monophyodont, Homodont	(2)	Pleurodont, Diphyodont, Heterodont					
	(3)	Thecodont, Diphyodont, Heterodont	(4)	Thecodont, Diphyodont, Homodont					
Sol:	[3]								
84.	Whi	ich of the following events does not occur	in r	ough endoplasmic reticulum ?					
	(1)	Cleavage of signal peptide	(2)	Phospholipid synthesis					
	(3)	Protein glycosylation	(4)	Protein folding					
Sol:	[2])MPETITIVE E		AMINATIONS					
85.	Sele	ct the incorrect match :							
	(1)	Submetacentric chromosomes	-	L-shaped chromosomes					
	(2)	Polytene chromosomes	-	Oocytes of amphibians					
	(3)	Allosomes	-	Sex chromosomes					
	(4)	Lampbrush chromosomes	-	Diplotene bivalents					
Sol:	[2]								
86.	AGGTATCGCAT is a sequence from the coding strand of a gene. What will be t corresponding sequence of the transcribed mRNA?								
	(1)	ACCUAUGCGAU	(2)	UCCAUAGCGUA					
	(3)	UGGTUTCGCAT	(4)	AGGUAUCGCAU					
Sol:	[4]								
87.	According to Hugo de Vries, the mechanism of evolution is								
		Phenotypic variations	(2)	Minor mutations					
	(3)	Saltation	(4)	Multiple step mutations					
Sol:	[3]								

88. Match the items given in Column I with those in Column II and select the **correct** option given below:

Column I

- a. Proliferative Phase
- b. Secretory Phase
- c. Menstruation
 - a
- (1) ii
- (2) iii
- (3) i
- (4) :::
- (4) iii

- b
- iii i
- iii
- ii

- Column II
- i. Breakdown of endometrial lining
- ii. Follicular Phase
- iii. Luteal Phase

С

- i
- ı
- ii
- Ш
- ii
- i

Sol: [1]

- 89. All of the following are part of an operon except
 - (1) an enhancer

(2) a promoter

(3) structural genes

(4) an operator

Sol: [1]

- **90.** A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by
 - (1) Only grandchildren

(2) Both sons and daughters

(3) Only sons

(4) Only daughters

Sol: [2]

- **91.** A tunning fork is used to produce resonance in a glass tube. The length of the air column in the tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 350 m/s
- (2) 300 m/s
- (3) 339 m/s
- (4) 330 m/s

Sol: [3] $V = 2f(I_2 - I_1) = 2 \times 320 \times 0.53 = 339 \text{ m/s}$

- **92.** The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and are A is
 - (1) proportional to the square root of the distance between the plates
 - (2) inversely proportional to the distance between the plates
 - (3) linearly proportional to the distance between the plates
 - (4) independent of the distance between the plates

Sol: [4] $F = \frac{Q^2}{2\epsilon_0 A}$

- 93. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1) 10 times greater (2) equal
- (3) 5 times greater
- (4) smaller

Sol: [4]
$$a = \frac{mg + qE}{m}$$

$$a = g + \frac{qE}{m}$$

$$m_e < m_p$$

$$\therefore a_e > a_p$$

$$t_e < t_p$$

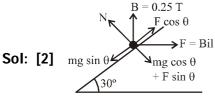
- 94. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from the mean position. The time period of oscillation is
 - (1) 2 s
- (2) 1 s
- (3) π s

Sol: [3]
$$|a| = \omega^2 y$$

$$20 = \omega^2 \times 5$$

$$\omega = 2 \text{ rad/s}$$

$$T = \frac{2\pi}{\omega} = \pi \, \mathrm{S}$$


- 95. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
- (2) 500 Ω
- (3) 25Ω
- (4) 40Ω

Sol: [1]
$$I_{s} = V_{s}R$$

$$5000 = 20 \times R$$

$$R = 250 \Omega$$

- 96. A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flow in the rod to keep it stationary is
 - (1) 14.76 A
- (2) 11.32 A
- (3) 5.98 A
- (4) 7.14 A

$$Bil\cos\theta = mg\sin\theta$$

$$0.25 \times i \times 1 \times \frac{\sqrt{3}}{2} = 0.5 \times 9.8 \times \frac{1}{2}$$

$$i = 11.32 \text{ A}$$

- **97.** A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes form
 - (1) the lattice structure of the material of the rod
 - (2) the induced electric field due to the changing magnetic field
 - (3) the magnetic field
 - (4) the current source

Sol: [2] Conceptual

- **98.** An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is
 - (1) 2.74 W
- (2) 1.13 W
- (3) 0.43 W
- (4) 0.79 W

Sol: [4] $\omega = 314 \text{ rad/s}$

$$X_I = 20 \times 10^{-3} \times 314 = 6.28 \ \Omega$$

$$X_C = \frac{1}{100 \times 10^{-6} \times 314} = 31.85 \,\Omega$$

$$I_{rms} = \frac{V_{rms}}{Z}$$

$$Z = \sqrt{(X_L - X_C)^2 + R^2} = 56.16 \,\Omega$$

$$I_{rms} = \frac{10}{56.16 \times \sqrt{2}} = 0.126 \text{ A}$$

$$P = I_{rms}^2 R = 0.79 \text{ W}$$

- **99.** An object is placed at a distance of 40 cm from concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1) 30 cm towards the mirror
 - (2) 36 cm towards the mirror
 - (3) 36 cm away from the mirror
 - (4) 30 cm away from the mirror

Sol: [3]
$$\frac{1}{V_1} - \frac{1}{40} = -\frac{1}{15}$$

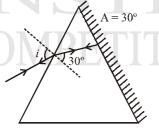
$$v_1 = -24 \text{ cm}$$

$$\frac{1}{v_2} - \frac{1}{20} = -\frac{1}{15}$$

$$v_2 = -60 \text{ cm}$$

$$v_2 - v_1 = -36 \text{ cm}$$

- **100.** An em wave is propagating in a medium with a velocity $\vec{V} = V\hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
 - (1) y direction
- (2) x direction
- (3) +z direction
- (4) z direction


Sol: [3] \vec{v} along $\vec{E} \times \vec{B}$

- $\therefore \quad \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}$
- **101.** The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1) 1.389 H
- (2) 13.89 H
- (3) 138.88 H
- (4) 0.138 H

Sol: [2] $25 \times 10^{-3} = \frac{1}{2} \times L \times (60 \times 10^{-3})^2$

$$L = \frac{50 \times 10^{-3}}{3600 \times 10^{-6}} = 13.89 \text{ H}$$

- **102.** The refractive index of the material of a prism is √2 and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic eight entering the prism form the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) 30°
- (2) zero
- (3) 45°
- (4) 60°

Sol: [3]

 $\sin i = \mu \sin 30^{\circ}$

$$\sin i = \sqrt{2} \times \frac{1}{2}$$

$$i = 45^{\circ}$$

- **103.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 2:-1
- (2) 1:-2
- (3) 1:-1
- (4) 1:1

Sol: [3] E = -K

$$\frac{K}{E} = \frac{1}{-1}$$

- **104.** An electron of mass m with an initial velocity $\vec{V} = V_0 \hat{i} (V_0 > 0)$ enters an electric field $\vec{E} = -E_0 i (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is
 - (1) $\lambda_0 t$
- (2) λ_0
- (3) $\lambda_0 \left(1 + \frac{eE_o}{mV_0} t \right)$ (4) $\left(1 + \frac{eE_o}{mV_0} t \right)$

Sol: [4] $\lambda_0 = \frac{h}{mV_2}$

$$V = V_0 + \frac{eE_0}{m}t$$

$$\lambda = \frac{h}{m\left(V_0 + \frac{eE_0t}{m}\right)}$$

$$\lambda = \frac{mV_0\lambda_0}{m\left(V_0 + \frac{eE_0t}{m}\right)}$$

- 105. For a radioactive material half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) of the disintegration of 450 nuclei is
 - (1) 30
- (2) 15
- (3) 10
- (4) 20

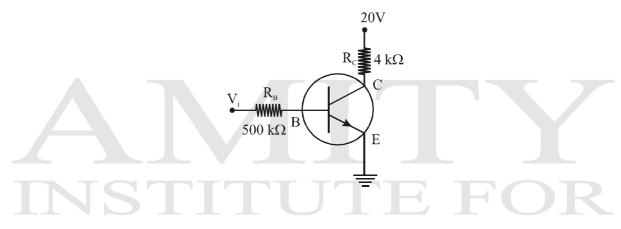
Sol: [4] $150 = \frac{600}{2^n}$

$$2^n = 4$$

$$t = 10 \times 2 = 20 \text{ min.}$$

- **106.** When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v₁. When the frequency of the incident radiation is increased to $5v_{0'}$ the maximum velocity of electrons emitted form the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 4:1
- (2) 2:1
- (3) 1:4
- (4) 1:2

- **Sol:** [4] $\frac{1}{2}mv_1^2 = 2hv_0 hv_0$
 - $\frac{1}{2}mv_1^2 = hv_0$


$$\frac{1}{2}mv_2^2 = 5hv_0 - hv_0$$

$$\frac{1}{2}mv_2^2 = 4hv_0$$

$$\therefore \frac{V_1^2}{V_2^2} = \frac{1}{4}$$

$$\frac{V_1}{V_2} = \frac{1}{2}$$

107. In the circuit shown in the figure, the input voltage V_i is 20 V, V_{BE} = 0 and V_{CE} = 0. The value of $I_{B'}$, I_{C} and β are given by

(1)
$$I_B = 20 \mu A$$
, $IC = 5 mA$, $\beta = 250$
(3) $I_B = 25 \mu A$, $I_C = 5 mA$, $\beta = 200$

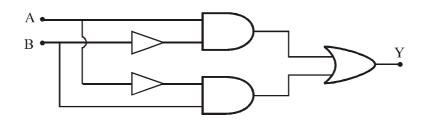
(2)
$$I_B = 40 \mu A$$
, $I_C = 5 mA$, $\beta = 125$

(3)
$$I_B = 25 \mu A$$
, $I_C = 5 mA$, $\beta = 200$

(2)
$$I_B = 40 \mu A$$
, $I_C = 5 mA$, $\beta = 125$
(4) $I_B = 40 \mu A$, $I_C = 10 mA$, $\beta = 250$

Sol: [2]
$$I_B = \frac{20}{500} \text{mA} = 40 \text{ }\mu\text{A}$$

$$I_C = \frac{20}{4} \text{mA} = 5 \text{mA}$$


$$\beta = \frac{I_C}{I_B} = \frac{5 \times 10^{+3}}{40} = 125$$

108. In a p-n junction diode, change in temperature due to heating

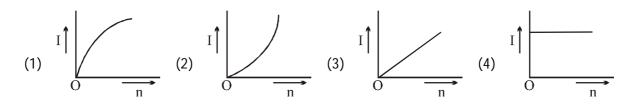
- (1) does not affect resistance of p-n junction
- (2) affects the overall V I characteristic of p-n junction
- (3) affects only forward resistance
- (4) affects only reverse resistance

Sol: [2] Conceptual

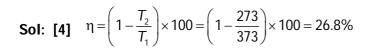
109. In the combination of the following gates the output Y can be written in terms of input A and B as

- (1) $\overline{A.B} + A.B$
- (2) $\overline{A+B}$
- (3) A. $\overline{B} + \overline{A}$. B
- (4) $\overline{A \cdot B}$

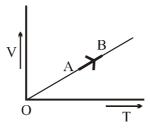
- **Sol:** [3] Out put $A \cdot \overline{B} + \overline{A} \cdot B$
- **110.** A carbon resistor of (47 \pm 4.7) k Ω is to be marked with rings of different colour for its identification. The colour code sequence will be
 - (1) Yellow Green Violet Gold
- (2) Green Orange Violet Gold
- (3) Yellow Violet Orange Silver
- (4) Violet Yellow Orange Silver
- **Sol:** [3] Yellow \rightarrow Violet \rightarrow Orange \rightarrow Silver
- **111.** A set of 'n' equal resistors, of value R each are connected in series to a battery of emf E and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - (1) 20
- (2) 9
- (3) 11
- (4) 10


Sol: [4] $I = \frac{E}{nR + R}$

$$\therefore \frac{10E}{nR+R} = \frac{E}{\frac{R}{n}+R}$$


$$\frac{10}{n} + 10 = n + 1$$

- \therefore n = 10
- **112.** A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?



Sol: [4] $I = \frac{nE}{nr} = \frac{E}{r}$

- 113. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
 - (1) 6.25%
- (2) 12.5%
- (3) 20%
- (4) 26.8%

114. The volume (V) of a monoatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B is

- (1) 1/3
- (2) 2/7
- (3) 2/3
- (4) 2/5

Sol: [4] For isobaric process

$$\Delta W = nR\Delta T$$

$$\Delta Q = nC_p \Delta T = \frac{5nR\Delta T}{2}$$

- 115. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1) 12.5 cm
- (2) 16 cm
- (3) 8 cm
- (4) 13.2 cm

Sol: [4]
$$\frac{V}{2I_1} = \frac{3V}{4I_2}$$

$$I_1 = \frac{2I_2}{3} = \frac{2 \times 20}{3} = 13.3 \text{ cm}$$

- 116. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given: Mass of oxygen molecule (m) = 2.76×10^{-26} kg, Boltzmann's constant $k_{\rm B} = 1.38 \times 10^{-23} \, \text{JK}^{-1}$)

- (1) 5.016×10^4 K (2) 1.254×10^4 K (3) 8.360×10^4 K (4) 2.508×10^4 K

Sol: [3]
$$V_{rms} = \sqrt{\frac{3kT}{m}} = V_e$$

$$T = \frac{mv_e^2}{3k} = \frac{2.76 \times 10^{-26} \times (11.2 \times 10^3)^2}{3 \times 1.38 \times 10^{-23}} = 8.36 \times 10^4 \text{ K}$$

- 117. The power radiated by a black body is P and it radiates maximum energy at wavelength λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $(3/4)\lambda_{n}$, the power radiated by it becomes nP. The value of n is
 - (1) $\frac{256}{81}$
- (2) $\frac{81}{256}$
- (3) $\frac{4}{3}$

$$\textbf{SoI:} \quad \textbf{[1]} \quad T_1\lambda_0 = T_2 \times \frac{3\lambda_0}{4} \qquad \qquad \therefore \quad T_2 = \frac{4}{3}T_1$$

$$T_2 = \frac{4}{3}T_1$$

$$P \propto T^4$$

$$\therefore P' = \frac{256}{81}P$$

- 118. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by ΔI on applying a force F, how much force is needed to stretch the second wire by the same amount?
 - (1) 4 F
- (2) F
- (3) 6 F
- 9 F

Sol: [4]
$$\Delta t = \frac{FL}{YA} = \frac{FV}{YA^2}$$
 $\frac{F_1}{A_1^2} = \frac{F_2}{A_2^2}$

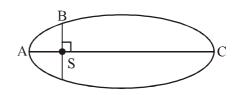
- 119. A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
 - (1) r^5
- (2) r^4
- (3) r^2
- (4) r^3
- **Sol:** [1] Rate of production of heat = loss in gravitational P.E per second

= mg
$$V_t \propto r^5$$
 (: $m \propto r^3$)

- 120. A sample of 0.1 g of water at 100°C and normal pressure (1.013 × 10⁵ Nm⁻²) requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) 42.2 J
- (2) 84.5 J
- (3) 208.7 J
- (4) 104.3 J

Sol: [3]
$$\Delta W = P\Delta V$$
 1.013 × 10⁵ × (167.1 × 10⁻⁶ – 0.1 × 10⁻⁶)

$$=~1.013~\times~10^{5}~\times~167~\times~10^{-6}$$


$$= 16.9 J$$

$$\Delta Q = 54 \text{ cal} = 54 \times 4.18$$

$$= 225.72 J$$

$$\Delta U = \Delta Q - \Delta W = 208.7 J$$

121. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are $K_{A'}$, K_{B} and $K_{C'}$ respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

- (1) $K_B < K_A < K_C$ (2) $K_B < K_A > K_C$ (3) $K_A > K_B > K_C$ (4) $K_A < K_B < K_C$

Sol: [3] By conservation of angular momentum, $K_C < K_B < K_A$

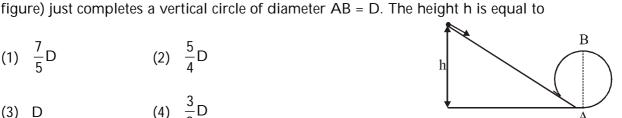
- 122. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_r) as well as rotational kinetic energy (K_r) simultaneously. The ratio K_t : ($K_t + K_r$) for the sphere is
 - (1) 10:7
- (2) 2:5
- (3) 5:7
- (4) 7:10

Sol: [3] $\frac{K_t}{K_t + K_r} = \frac{\frac{1}{2}mv^2}{\frac{1}{2}mv^2 + \frac{1}{2} \times \frac{2}{5}mv^2} = \frac{5}{7}$

- 123. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - (1) Rotational kinetic energy
- (2) Angular momentum

(3) Moment of inertia

(4) Angular velocity


Sol: [2] $K_R = \frac{L^2}{2I}$

L = constant

- 124. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
 - (1) Time period of a simple pendulum on the Earth would decrease.
 - (2) 'g' on the Earth will not change
 - (3) Walking on the ground would become more difficult.
 - (4) Raindrops will fall faster.

Sol: [2] $g = \frac{GM_e}{R_e^2}$

125. A body initially at rest and sliding along a frictionless track from a height h (as shown in the

- (1) $\frac{7}{5}$ D
- (2) $\frac{5}{4}$ D
- (3) D
- (4) $\frac{3}{2}$ D

Sol: [2] $mgh = \frac{1}{2}m \times \frac{5gD}{2}$

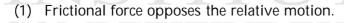
$$h = \frac{5D}{4}$$

- 126. Three objects, A: (a solid sphere), B: (a thin circular disk) and C: (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation

- (1) $W_B > W_A > W_C$ (2) $W_A > W_C > W_B$ (3) $W_A > W_B > W_C$ (4) $W_C > W_B > W_A$

Sol: [4] $W = \frac{1}{2}I\omega^2$

$$I_{\text{ring}} > I_{\text{disk}} > I_{\text{sphere}}$$


- 127. A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - (1) 0.8
- (2) 0.4
- (3) 0.25
- (4) 0.5

Sol: [3] mv = 4 mV

$$V = \frac{V}{4}$$

$$e = \frac{V}{V} = \frac{1}{4} = 0.25$$

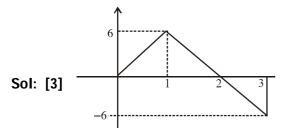
128. Which one ' of the' following statements is incorrect?

- (2) Coefficient of sliding friction has dimensions of length.
- (3) Limiting value of static friction is directly proportional to normal reaction.
- (4) Rolling friction is smaller than sliding friction.

Sol: [2] Conceptual

129. The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by

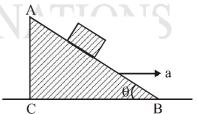
- (1) $-7\hat{i} 8\hat{j} 4\hat{k}$ (2) $-7\hat{i} 4\hat{j} 8\hat{k}$ (3) $-4\hat{i} \hat{j} 8\hat{k}$ (4) $-8\hat{i} 4\hat{j} 7\hat{k}$


Sol: [2] $\vec{\tau} = \vec{r} \times \vec{F}$

$$\vec{r} = (2-2)\hat{i} + (0+2)\hat{j} + (-3+2)\hat{k} = 2\hat{j} - \hat{k}$$

$$\vec{\tau} = (2\hat{j} - \hat{k}) \times (4\hat{i} + 5\hat{j} - 6\hat{k})$$

$$= -8\hat{k} - 12\hat{i} - 4\hat{j} + 5\hat{i} = -7\hat{i} - 4\hat{j} - 8\hat{k}$$


- 130. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E} . Due to the force $q\vec{E}$, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 - (1) 1 m/s, 3.5 m/s
- (2) 1.5 m/s, 3 m/s
- (3) 1 m/s, 3m/s
- (4) 2 m/s, 4 m/s

Average velocity =
$$\frac{6-3}{3}$$
 = 1 m/s

Average speed =
$$\frac{6+3}{3}$$
 = 3 m/s

131. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

- (1) $a = q \cos \theta$
- (2) $a = g \tan \theta$
- (3) $a = \frac{g}{\sin \theta}$
- (4) $a = \frac{g}{\csc \theta}$
- **Sol:** [2] $mg \sin \theta = ma \cos \theta$

$$\therefore$$
 $a = g \tan \theta$

- **132.** A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of –0.004 cm, the correct diameter of the ball is
 - (1) 0.053 cm
- (2) 0.529 cm
- (3) 0.525 cm
- (4) 0.521 cm

Sol: [2] $d = 0.5 + 25 \times 0.001 + 0.004 = 0.529$ cm

133. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?

$$(1) \quad i = \sin^{-1}\left(\frac{1}{\mu}\right)$$

(2)
$$i = \tan^{-1}\left(\frac{1}{\mu}\right)$$

- (3) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
- (4) Reflected light is polarised with its electric vector parallel to the plane of incidence

Sol: [4]
$$\mu = \tan i$$

 $i = \tan^{-1}(\mu)$

- 134. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) 2.1 mm
- (2) 1.7 mm
- (3) 1.9 mm
- (4) 1.8 mm

Sol: [3]
$$d = 2 \text{ mm}$$

 $\lambda = 5896 \text{ Å}$
 $D = 100 \text{ cm}$

$$d_2 = \frac{40}{21} = 1.9 \text{ mm}$$

- **135.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) large focal length and large diameter
- (2) small focal length and small diameter
- (3) large focal length and small diameter
- (4) small focal length and large diameter

Sol: [1] Factual

- 136. In which case is the number of molecules of water maximum?
 - (1) 0.00224 L of water vapours at 1 atm and 273 K
 - (2) 10⁻³ mol of water
 - (3) 0.18 g of water
 - (4) 18 mL of water
- **Sol:** [4] 0.00224 L water vapours = 10^{-3} mole of water vapours 18 ml of water = 18 g water = 1 mole water = 6.02×10^{23} molecule

137. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

$$BrO_{4}^{-} \xrightarrow{1.82V} BrO_{3}^{-} \xrightarrow{1.5V} HBrO \xrightarrow{1.595} Br_{2} \xrightarrow{1.00652V} Br^{-}$$

Then the species undergoing disproportionation is

- (1) Br₂
- (2) HBrO
- (3) BrO_4^-
- (4) BrO_2^-

Sol: [2] HBrO \longrightarrow BrO $_{3}^{-}$ E⁰ = -1.5 V

 $HBrO \longrightarrow Br_2$ $E^0 = + 1.595$

 $E^0 = + 0.095$

Spontaneous

138. Among CaH₂, BeH₂, BaH₂, the order of ionic character is:

(1) $BeH_2 < BaH_2 < CaH_2$

(2) $BaH_2 < BeH_2 < CaH_2$

(3) $CaH_2 < BeH_2 < BaH_2$

(4) $BeH_2 < CaH_2 < BaH_2$

Sol: [4] $BeH_2 < CaH_2 < BaH_2$

- 139. The correct difference between first- and second-order reactions is that
 - (1) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (2) the rate of a first-order reaction does depend on reactant concentration; the rate of a second-order reaction does not depend on reactant concentration
 - (3) the half-life of a first-order reaction does not depend on [A]₀; the half-life of a secondorder reaction does depend on [A]₀
 - (4) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations

Sol: [3]

140. The type of isomerism shown by the complex [CoCl₂(en)₂] is

(1) Ionization isomerism

- (2) Linkage isomerism
- (3) Coordination isomerism
- (4) Geometrical isomerism

Sol: [4]

141. Which one of the following ions exhibits d-d transition and paramagnetism as well?

- (1) MnO_4
- (2) MnO_4^{2-} (3) $Cr_2O_7^{2-}$
- (4) CrO₄²⁻

Sol: [2] d-d transition and paramagnetism is possible when their is presence of unpaired electron in d-orbital.

142. The geometry and magnetic behaviour of the complex [Ni(CO)₄] are

- (1) square planar geometry and paramagnetic
- (2) tetrahedral geometry and paramagnetic
- (3) tetrahedral geometry and diamagnetic
- (4) square planar geometry and diamagnetic

Sol: [3]

- **143**. Iron carbonyl, Fe(CO)₅ is
 - (1) trinuclear
- (2) dinuclear
- (3) mononuclear
- (4) tetranuclear

Sol: [3]

144. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

Column I

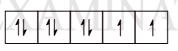
 Co^{3+} a.

 $\sqrt{8}$ B.M. i.

Column II

Cr3+ b.

 $\sqrt{35}$ B.M.


C. Fe³⁺

 $\sqrt{3}$ B.M. iii.

d. Ni_{2+}

- $\sqrt{24}$ B.M.
- $\sqrt{15}$ B.M.

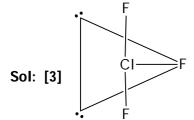
- d
- (1) iv ii iii
- (2)_ iii ii
- (3)
- (4) iv

 Co^{3+}

 $3d^{6}4s^{0}$

4 unpaired electrons

 $\sqrt{n(n+2)}$ B.M. $\sqrt{4(4+2)}$ B.M. = $\sqrt{24}$ B.M.


- Cr^{3+}
- $3d^34s^0$
- 3 unpaired electrons $\sqrt{3(3+2)}$ B.M.
- $= \sqrt{15} \text{ B.M.}$

- Fe³⁺
- $3d^{5}4s^{0}$
- 5 unpaired electrons $\sqrt{5(5+2)} \sqrt{35}$ B.M.

- Ni²⁺
- $3d^{8}4s^{0}$
- 2 unpaired electrons $\sqrt{2(2+2)}$ B.M. $\sqrt{8}$ B.M.
- **145.** Which one of the following elements is unable to form MF_6^{3-} ion?
 - (1) B
- (2) In
- (3) AI
- (4) Ga

Sol: [1] B due to absence of vacant d-orbitals.

- **146.** In the structure of CIF₃, the number of lone pairs of electrons on central atom 'CI' is
 - (1) four
- (2) three
- (3) two

- 147. The correct order of N-compounds in its decreasing order of oxidation states is
 - (1) HNO₃, NH₄CI, NO, N₂

(2) NH₄CI, N₂, NO, HNO₃

(3) HNO₃, NO, NH₄CI, N₂

(4) HNO₃, NO, N₂, NH₄CI

Sol: [4] $H_{NO_{3}}^{+5}$; NO_{3}^{+2} ; NO_{2}^{-3} ; $NH_{4}CI$

- **148**. Which of the following statements is *not* true for halogens?
 - (1) All but fluorine show positive oxidation states.
 - (2) Chlorine has the highest electron-gain enthalpy.
 - (3) All are oxidizing agents.
 - (4) All form monobasic oxyacids.

Sol: [1]

- 149. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
 - (1) Mg
- (2) Cu
- (3) Zn
- (4) Fe

Sol: [1]

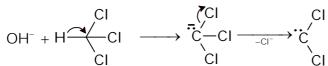
- 150. The correct order of atomic radii in group 13 elements is
 - (1) B < Ga < AI < TI < In

(2) B < Ga < AI < In < TI(4) B < AI < In < Ga < TI

(3) B < AI < Ga < In < TI

Sol: [2] B < Ga < Al < In < Tl

151. In the reaction


$$\begin{array}{c} OH \\ \hline \\ + CHCI_3 + NaOH \\ \hline \end{array}$$

the electrophile involved is

- (1) dichlormethyl anion $(CHCI_2)$
- (2) dichlorocarbene (*CCI₂)

(3) formyl cation (CHO)

- (4) dichlromethyl cation (CHCI.)
- Sol: [2] Question is based on Reimer Tiemnn Reaction

dichlorocarbene

- **152.** Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) more extensive association of carboxylic aicd via van der Waals force of attraction
 - (2) formation of intermolecular H-bonding
 - (3) formation of carboxylate ion
 - (4) formation of intramolecular H-bonding
- Sol: [2] Due to formation of intermolecular H-bonding.
- **153.** Compound A, C₈H₁₀O, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.

A and Y are respectively

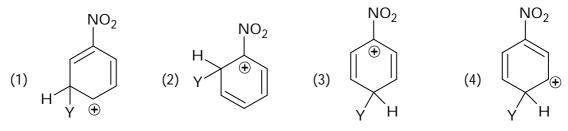
(1)
$$CH_3$$
 and I_2

(2)
$$H_3C$$
 OH and I_2

(3)
$$CH_2$$
 and I_2 CH_2 -OH

(4)
$$H_3C$$
 CH_2 and I_2 OH

- Sol: [1] lodoform reaction
- **154.** Which of the following molecules represents the order of hybridisation sp², sp², sp, sp from left to right atoms?


(1)
$$CH_2 = CH - CH = CH_2$$

(3)
$$CH_2 = CH - C \equiv CH$$

(4)
$$HC \equiv C - C \equiv CH$$

Sol: [3] $sp^2 sp^2 sp sp$

155. Which of the following carbocations is expected to be most stable?

- **Sol:** [1] $-NO_2$ is an EWG and C⁺ is furthermost from $-NO_2$
- **156.** Which of the following is correct with respect to I effect of the substituents? (R = alkyl)

(1)
$$-NH_2 > -OR > -F$$

(2)
$$-NR_2 > -OR > -F$$

(3)
$$-NR_2 < -OR < -F$$

(4)
$$-NH_2 < -OR < -F$$

Sol: [4] On the basis of electronegativity of atom.

- 157. Regarding cross-linked or network polymers, which of the following statements is incorrect?
 - (1) Examples are bakelite and melamine.
 - (2) They contain strong covalent bonds in thier polymer chains.
 - (3) They are formed from bi- and tri-functional monomers.
 - (4) They contain covalent bonds between various linear polymer chains.

Sol: [4]

- 158. Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In absence of substituents nitro group always goes to m-position
 - (2) In acidic (strong) medium aniline is present as anilinium ion.
 - (3) In electrophilic substitution reactions amino group is meta directive.
 - (4) In spite of substituents nitro group always goes to only m-position

Sol: [2]
$$\begin{array}{c} NH_2 \\ + H^+ \\ \hline \\ O_2N \end{array}$$

- 159. The difference between amylose and amylopectin is
 - (1) Amylopectin have 1 \rightarrow 4 α -linkage and 1 \rightarrow 6 β -linkage
 - (2) Amylose is made up of glucose and galactose
 - (3) Amylose have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
 - (4) Amylopectin have 1 \rightarrow 4 α -linkage and 1 \rightarrow 6 α -linkage

- **160.** A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP) will be
 - (1) 2.8
- (2) 4.4
- (3) 3.0
- (4) 1.4

Sol: [1]
$$HCOOH \xrightarrow{conc. H_2SO_4} CO + H_2O$$

$$COOH \xrightarrow{conc. H_2SO_4} CO_2 + CO + H_2O$$

$$COOH$$

$$\frac{1}{10} \text{ moles of CO are left}$$

Hence weight is $\frac{1}{10} \times 28 = 2.8 \text{ g}$

161. Which of the following oxides is most acidic in nature?

- (1) BaO
- (2) CaO
- (3) BeO
- (4) MgO

Sol: [3]

(1)

162. For the redox reaction

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O_4$$

the correct coefficients of the reactants for the balanced equation are

MnO_4^-	$C_2O_4^{2-}$	H⁺
2	16	5
_		_

- (2) 5 2 16 5 16
- (3) 2 (4) 16 2

Sol: [3]
$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

163. Which one of the following conditions will favour maximum formation of the product in the reaction,

$$A_2(g) + B_2(g) \longrightarrow X_2(g)$$
 $\Delta_r H = -XkJ$?

- (1) High temperature and high pressure
- (2) High temperature and low pressure
- (3) Low temperature and low pressure
- (4) Low temperature and high pressure

Sol: [4] According to Le Chatellier's principle

164. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction

(1) is tripled

(2) remains unchanged

(3) is doubled

(4) is halved

Sol: [3] $t_{1/2}$ for zero order ∞ a

165. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1 : 0.5 : 1. ΔH for the formation of XY is – 200 kJ mol $^{-1}$. The bond dissociation energy of $\rm X_2$ will be

- (1) 800 kJ mol^{-1} (2) 400 kJ mol^{-1}
- (3) 100 kJ mol^{-1} (4) 200 kJ mol^{-1}

Sol: [4] $X - X + Y - Y \longrightarrow 2X - Y$

$$\Delta H = \sum B.E._{Reactant} - \sum B.E._{Product}$$

$$-400 = x + \frac{1}{2}x - 2x$$

 $x = 800 \text{ kJ mol}^{-1}$

- **166.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) electric field present between the gas molecules
 - (2) forces of attraction between the gas molecules
 - (3) volume of the gas molecules
 - (4) density of the gas molecules
- Sol: [2] Factual
- 167. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concnetrations:
 - a. $60 \text{ mL} \frac{M}{10} \text{ HCI} + 40 \text{ mL} \frac{M}{10} \text{ NaOH}$ b. $55 \text{ mL} \frac{M}{10} \text{ HCI} + 45 \text{ mL} \frac{M}{10} \text{ NaOH}$

 - c. $75 \text{ mL} \frac{\text{M}}{5} \text{HCI} + 25 \text{ mL} \frac{\text{M}}{5} \text{NaOH}$ d. $100 \text{ mL} \frac{\text{M}}{10} \text{HCI} + 100 \text{ mL} \frac{\text{M}}{10} \text{NaOH}$

pH of which one of them will be equal to 1?

- (1) d

- (3) a
- (4) b

Sol: [2] 75 ml $\frac{M}{5}$ HCl = 15 milli mole of HCl

$$25\text{ml}\frac{M}{5}\text{NaOH} = 5 \text{ milli mole of NaOH}$$

5 milli mole of HCI present in 100 ml

Molarity =
$$\frac{10^{-2} \times 1000}{100} = 10^{-1} \text{M HCI}$$

pH = 1

- **168.** On which of the following properties does the coagulating power of an ion depend?
 - (1) Both magnitude and sign of the charge on the ion
 - (2) The sign of charge on the ion alone
 - (3) Size of the ion alone
 - (4) The magnitude of the charge on the ion alone
- Sol: [1] Hardy and Schulze rule
- 169. Given van der Waals constant for NH_{3} , H_{2} , O_{2} and CO_{2} are respectively 4.17, 0.244, 1.36 and 3.59, which one of hte following gases is most easily liquefied?
 - (1) O₃
- (2) CO_a
- (3) H_a
- (4) NH₃
- **Sol:** [4] Degree of liquification ∞ value of van der Waals constant.

170. The solubility of BaSO₄ in water is 2.42×10^{-3} gL⁻¹ at 298 K. The value of its solubility product (K_{sp}) will be

(Given molar mass of BaSO₄ = 283 g mol⁻¹)

(1) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$

(2) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$

(3) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$

(4) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$

Sol: [4] $K_{SD} = S^2$

Solubility in mole/litre =
$$\frac{242}{233} \times 10^{-5} = 1.038 \times 10^{-5}$$

$$K_{sp} = (1.038 \times 10^{-5})^2$$

$$K_{\rm sp} = 1.08 \times 10^{-10}$$

171. Identify the major products P, Q and R in the following sequence of reactions:

$$+ CH_3CH_2CI \xrightarrow{Anhydrous \ AlCI_3} P \xrightarrow{(i) O_2 \ (ii) \ H_2O^+/\Delta} Q + R$$

(2)
$$CH(CH_3)_2$$
 $CH_3 - CO - CH_3$

(4)
$$CH_3CH_2CH_3$$
 CHO , CH_3CH_2-OH

Sol: [2]

$$\xrightarrow{H_3O^+/\Delta} O \\ + \\ H_3C \\ CH_3$$

- **172.** Which of the following compounds can form a zwitterion?
 - (1) Benzoic acid
- (2) Glycine
- (3) Acetanilide
- (4) Aniline

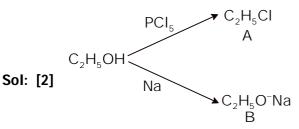
- **Sol:** [2] $NH_3^+ CH_2 COO^-$
- **173.** The compound C_7H_8 undergoes the following reactions:

$$C_7H_8 \xrightarrow{3CI_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCI} C$$

The product 'C' is:

- (1) 3-bromo-2-4,6-trichlorotoluene
- (2) p-bromotoluene

(3) o-bromotoluene


(4) *m*-bromotoluene

Sol: [4]
$$\xrightarrow{CH_3}$$
 $\xrightarrow{CCI_3}$ $\xrightarrow{CCI_3}$ $\xrightarrow{CH_3}$ $\xrightarrow{Zn/HCI}$ $\xrightarrow{Zn/HCI}$ $\xrightarrow{Br_2/Fe}$ $\xrightarrow{Br_2$

- **174.** Which oxide of nitrogen is **not** a common pollutant introduced into the atmosphere both due to natural and human activity?
 - $(1) N_2O =$
- (3) NO₂
- (4) N_2O_5

- 175. The compound A on treatment with Na gives B, and with PCI_s gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - (1) C_2H_5CI , C_2H_6 , C_2H_5OH

- (2) C₂H₅OH, C₂H₅ONa, C₂H₅CI
- (3) C_2H_5OH , C_2H_5CI , C_2H_5ONa
- (4) C_2H_5OH , C_2H_6 , C_2H_5CI

$$A + B \longrightarrow C_2 H_5 O C_2 H_5$$

- 176. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms (A) is
 - (1) $CH_3 CH_3$ (2) CH_4
- (3) $CH_2 = CH_2$ (4) CH = CH

Sol: [2] $CH_4 + Br_2 \longrightarrow CH_3 - Br$

$$CH_3 - Br + 2Na + Br - CH_3 \longrightarrow CH_3 - CH_2 + 2NaBr$$

177. Consider the following species:

CN+, CN-, No and CN

Which one of these will have the highest bond order?

- (1) CN+
- (2) CN
- (3) CN-
- (4) NO

Sol: [3] Bond order of $CN^- = 3$

178. Magneisum reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is 1s²2s²2p³, the simplest formula for the complound is:

- (1) Mg₂X
- (2) Mg_3X_2
- (3) MgX₂
- (4) Mg₂X₃

Sol: [2]

179. Iron exhibits bcc structure at room temeprature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is

- (3) $\frac{4\sqrt{3}}{3\sqrt{2}}$ (4) $\frac{\sqrt{3}}{\sqrt{2}}$

Sol: [1] bcc

$$r = \frac{\sqrt{3}}{4}a$$

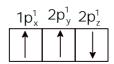
$$r = \frac{a}{2\sqrt{2}}$$

$$\rho = \frac{ZM}{a^3NA} \rho = \frac{ZM}{a^3N_A} \rho_{bcc} = \frac{2 \times M}{\frac{4}{3} \times \frac{\sqrt{3}}{4}}$$

$$r = \frac{\sqrt{3}}{4}a$$

$$a = \frac{4r}{\sqrt{3}}\rho_{bcc} = \frac{2 \times M}{\left(\frac{4r}{\sqrt{3}}\right)^3 \times N_A}$$

$$\frac{\rho_{bcc}}{\rho_{fcc}} = \frac{2 \times M}{\frac{64r^3}{3\sqrt{3}}} \times \frac{16\sqrt{2}r^3N_A}{4 \times M} = \frac{3}{4}\frac{\sqrt{3}}{\sqrt{2}}$$


$$\frac{2 \times 16\sqrt{2} \times 3\sqrt{3}}{\frac{64}{2} \times 4} = \frac{\sqrt{2} \times 3\sqrt{3}}{2 \times 4} = \frac{3\sqrt{3}}{\sqrt{2} \times 4}$$

180. Which one is a **wrong** statement

(1) The electronic configuration of N atom is

- (2) The value of m for d₂2 is zero
- (3) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbersw
- (4) Total orbital angular momentum of electron in 's' orbital is equal to zero.

Sol: [1] Spin is changed