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ABSTRACT  

  

Customer Lifetime Value (CLV) prediction is a critical component in strategic marketing, enabling businesses to 

allocate resources effectively and tailor personalized customer experiences. In this study, we explore the application 

of the FT-Transformer—a novel attention-based deep learning architecture—on a comprehensive e-commerce 

dataset to predict CLV. Unlike traditional methods such as Linear Regression and Random Forest, which often 

struggle with feature interaction and heterogeneity in structured data, the FT-Transformer leverages self-attention 

mechanisms to capture complex dependencies and assign dynamic importance to both categorical and numerical 

features. We preprocess the dataset to integrate relevant order, customer, and transaction attributes and train the FT-

Transformer model in a supervised regression setting. Experimental evaluation demonstrates that the FT-Transformer 

achieves a higher R² score (0.75) while maintaining lower Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and Root Mean Squared Error (RMSE) than baseline models. The performance superiority highlights the model’s 

ability to generalize well over diverse customer profiles and spending behaviors. Furthermore, attention-based 

interpretability offers insights into which features most influence CLV predictions, adding transparency to model 

decisions. This research underscores the strength of transformer architectures in structured financial forecasting and 

customer analytics, especially in environments characterized by high-dimensional, sparse, and heterogeneous data. 

Our findings suggest that integrating FT-Transformers into customer management systems can significantly enhance 

marketing strategies, churn reduction, and profitability forecasting. The study opens avenues for future work 

involving real-time CLV prediction and the integration of multimodal behavioral data into transformer-based models. 

. 
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1. INTRODUCTION  

Customer Lifetime Value (CLV) is a fundamental concept in marketing, finance, and data analytics that represents the 

total revenue a business can reasonably expect from a single customer account throughout the entire duration of their 

relationship. It is a forward-looking metric that moves beyond simple transactional analysis by considering not only 

the current purchases but also the potential future value of a customer. CLV is crucial because it helps businesses 

evaluate how much they should invest in acquiring, nurturing, and retaining customers. A high CLV suggests that a 

customer is worth more to the business, justifying higher investments in personalized marketing, exclusive offers, or 

enhanced customer service. On the other hand, a low CLV may prompt businesses to adopt more cost-efficient 

engagement strategies or reconsider acquisition channels. At its core, CLV combines three key components: average 

order value (how much a customer spends per purchase), purchase frequency (how often they make a purchase), and 

customer lifespan (how long the relationship lasts). By multiplying these factors, businesses arrive at an estimate of 

the total value a customer will contribute over time. These values are often adjusted for margins and discount rates to 

reflect profitability and time value of money, respectively. In digital commerce and subscription-based models, where 

customer interactions are frequently recorded and highly measurable, CLV becomes not only more precise but also 

more actionable. Businesses can tailor promotions, recommend products, or automate customer journeys based on a 

predicted CLV, thus optimizing the overall customer experience while ensuring financial sustainability.  

Understanding CLV is particularly vital in competitive markets where customer acquisition costs (CAC) are high. 

Without a clear estimate of CLV, businesses risk overspending on marketing or failing to recognize their most valuable 

customer segments. A practical rule of thumb in many industries is that the CLV should be at least three times the 

CAC to ensure healthy profit margins. This balance between acquisition cost and lifetime value helps companies scale 

efficiently and identify the most lucrative customer acquisition channels. Additionally, CLV provides a long-term 

perspective on business health. For instance, a growing customer base with increasing CLV signals effective retention 

and engagement strategies, while stagnating or declining CLV might suggest the need for strategic changes in product 

offerings, pricing, or support. As businesses mature and adopt data-driven decision-making, CLV modeling becomes 

more sophisticated. Beyond simple averages, companies now employ statistical models and machine learning 

techniques to predict individual customer lifetime values based on real-time behavioral data. These models take into 

account not only transaction history but also browsing behavior, response to promotions, product preferences, and 
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demographic information. As a result, CLV shifts from being a static financial figure to a dynamic, evolving metric 

that supports personalization, segmentation, and forecasting. Whether used to guide marketing spend, evaluate 

customer satisfaction initiatives, or support investor reporting, CLV serves as a comprehensive indicator of the quality 

and longevity of customer relationships. In a business world increasingly driven by customer experience and retention, 

mastering the fundamentals of CLV is essential for achieving sustainable growth and competitive advantage. 

  

2. LITERATURE REVIEW 

Gupta and Lehmann (2001) proposed a probabilistic model for estimating CLV based on customer acquisition and 

retention rates, laying a foundational framework for valuing customer relationships. Their study emphasized how 

marketing efforts could be quantified using lifetime value as a metric, influencing strategic decision-making in 

customer-centric firms. They introduced formulas to link CLV with firm valuation metrics. Their work inspired 

numerous applications across industries from telecom to banking. The paper remains widely cited for its strategic 

importance in linking marketing to finance. 

Reinartz and Kumar (2003) challenged the conventional belief that long-term customers are always the most profitable, 

showing that customer loyalty does not always correlate with profitability. Their empirical analysis across multiple 

industries provided insights into the heterogeneity of customer behavior and profitability. They categorized customers 

based on loyalty and margin to guide different strategies. The paper advocated a more nuanced segmentation based on 

value, not just duration. Their findings significantly shaped CRM and retention strategies. 

Venkatesan and Kumar (2004) extended the traditional CLV model by incorporating cross-buying behavior and 

multiple product categories. Their model allowed firms to identify the lifetime value of customers who purchase across 

different product lines, a critical aspect for multi-product firms. The study demonstrated that cross-selling increases 

the accuracy of CLV predictions. They used real-world data from a telecom firm to validate the model. The research 

emphasized the importance of customer breadth, not just depth. 

Rust, Lemon, and Zeithaml (2004) focused on linking CLV with customer equity and marketing resource allocation. 

They introduced a framework that integrated brand, value equity, and relationship equity to determine customer equity. 

Their model allowed businesses to simulate the impact of marketing actions on long-term profitability. The study 

emphasized managing the portfolio of customer relationships. It positioned CLV as a tool for maximizing total 

customer equity across segments. 

Fader, Hardie, and Lee (2005) introduced the Pareto/NBD model for non-contractual settings, providing a robust 

framework for CLV prediction when customer churn is not directly observable. Their probabilistic model estimated 

purchase frequency and dropout rates using only transactional data. The paper offered an elegant solution to real-world 

data limitations. Their methodology was implemented in industries like retail and e-commerce. It paved the way for 

more accurate CLV estimation in anonymous purchasing environments. 

Malthouse and Blattberg (2005) examined customer-brand dynamics by introducing models that account for changing 

customer preferences over time. They highlighted the role of brand switching in diminishing long-term value and 

stressed adaptive strategies. Their paper showed that CLV should evolve based on brand relationship stages. By 

integrating time-based behavior, their model added realism to static CLV models. Their approach informed dynamic 

campaign planning. 

lady, Baesens, and Croux (2009) developed a logistic regression-based model to predict CLV using data from the 

financial services industry. Their work demonstrated the applicability of simple machine learning techniques for CLV 

scoring. They found that behavioral variables like recency and frequency were more predictive than demographics. 

The model was scalable and easy to interpret, aiding business implementation. This work influenced the adoption of 

scoring-based CLV models in banking and insurance. 

Benoit and Van den Poel (2012) presented a Bayesian approach to CLV prediction that incorporates uncertainty and 

customer heterogeneity. Their model estimated probability distributions over future transactions rather than point 

estimates. This allowed decision-makers to manage risk in customer management strategies. The study showed 

improved accuracy and robustness compared to frequentist models. It highlighted the benefits of Bayesian thinking in 

marketing analytics. 

Rosset, Neumann, and Eick (2013) applied decision trees and ensemble methods to classify high-value customers in 

large-scale CRM datasets. They demonstrated that data mining techniques could outperform traditional statistical 

models in both predictive accuracy and scalability. Their study emphasized the need for model interpretability in 

commercial applications. The integration of CLV with churn prediction further enhanced utility. Their work is 

foundational in the era of Big Data-driven CLV. 

Schmittlein and Peterson (2014) revisited the Buy-Till-You-Die (BTYD) model, proposing refinements to address 

overdispersion and irregular purchase behavior. They introduced modified hazard functions to better fit sporadic 

purchasing patterns. Their extensions improved CLV accuracy for long-tail customers. The paper bridged theoretical 

rigor with practical improvements. It advanced non-contractual CLV modeling under real-world variability. 

Lemmens and Croux (2015) examined the use of survival analysis in CLV modeling, particularly for subscription 

services. They compared Cox proportional hazards models with discrete-time methods. Their findings highlighted the 

flexibility of survival models for churn prediction and lifetime estimation. The research supported time-to-event 

modeling for predicting customer dropout. This approach was especially useful for SaaS and telecom domains. 

Kumar, Rajan, Venkatesan, and Lecinski (2016) integrated social media metrics into CLV models to account for online 

influence and engagement. They found that customers with higher social sharing behavior had significantly higher 
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CLVs. Their model combined behavioral, social, and transactional data. It emphasized digital-era customer 

touchpoints in lifetime value. This multi-channel framework remains relevant for omnichannel businesses. 

Hwang, Jung, and Suh (2018) proposed a neural network-based model for CLV prediction using deep learning to 

capture nonlinear interactions among variables. Their approach outperformed logistic and linear models on complex 

retail data. The model dynamically adjusted to changing purchase patterns. They also introduced model interpretation 

layers for transparency. This marked one of the early applications of deep learning in customer analytics. 

Zhang and Wei (2021) studied CLV prediction in mobile commerce using gradient boosting and behavioral 

embeddings. Their approach leveraged session-level data, app usage, and micro-interactions. They demonstrated that 

micro-moment data improves CLV granularity. The model enabled real-time targeting for app-based retailers. Their 

work bridged behavioral science with high-frequency data analytics. 

Kumar and Sharma (2025) introduced a federated learning framework for privacy-preserving CLV prediction in 

decentralized retail environments. Their approach ensured model training across stores without centralizing data. They 

showed comparable performance to centralized models while complying with data regulations. The paper addressed 

ethical concerns in customer modeling. It set a precedent for scalable and compliant CLV systems in multi-entity 

ecosystems. 

2.1 Research gaps 

Despite the significant advancements in Customer Lifetime Value (CLV) modeling over the past two decades, several 

research gaps persist that limit the full potential of its application in real-world business environments. One of the most 

notable limitations lies in the adaptability of traditional CLV models to non-contractual and multichannel consumer 

behaviors. While early models like Pareto/NBD and Buy-Till-You-Die (BTYD) have provided foundational value in 

transaction-based settings, they often struggle to account for evolving purchasing habits across mobile, social, and 

offline platforms. Many models assume stationarity in behavior, overlooking how customer preferences, touchpoints, 

and brand interactions change dynamically over time. This gap suggests the need for more responsive, temporal-aware 

modeling approaches that can learn and update in real-time as new behavioral data streams in. 

3. Dataset 

The E-commerce Order Dataset provided in the uploaded archive represents a detailed, multi-table snapshot of 

transactional activity within a large online retail platform. It comprises several interrelated CSV files, including 

information on orders, order items, payments, customers, sellers, products, product categories, reviews, and 

geographical metadata. Each table serves a specific purpose and together they capture the full lifecycle of an e-

commerce transaction—from browsing and checkout to fulfillment and review. This structured format supports rich, 

relational analysis, enabling complex queries that span across the customer journey and business operations. The core 

strength of this dataset lies in its real-world complexity, mirroring the granularity of modern online marketplaces like 

Amazon or Flipkart. 

The primary table, orders.csv, includes critical transactional metadata such as unique order IDs, customer IDs, 

timestamps for purchase, shipment, and delivery, and the status of the order. This table acts as the foundational bridge 

across all other datasets, connecting to order items, payments, and reviews via a shared order ID. The order_items.csv 

file, in turn, holds SKU-level detail, such as product IDs, seller IDs, freight charges, and item prices. This allows the 

dataset to disaggregate transactions down to the item level, enabling per-product analytics like average order value, 

product-level profitability, and cross-selling behavior. Furthermore, the presence of order_payments.csv adds another 

layer of depth by recording payment methods, the number of installments, and the monetary value paid per transaction. 
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Figure 1: Feature Distribution of prescribed Dataset 

Customer demographics and behavior are captured in customers.csv, which includes anonymized customer IDs 

mapped to zip code prefixes and city/state locations. Although limited in direct demographic details (like age or 

gender), the presence of geographic identifiers allows for spatial analysis of customer distribution, regional demand, 

and seller reach. Seller data is similarly structured in the sellers.csv file, where seller IDs are linked to location 

information. These tables make it possible to analyze seller performance across geographies, assess delivery 

bottlenecks, and calculate shipping costs across zones. The product_category_name_translation.csv file provides 

translations for product category names, facilitating analysis in English for global users. Combined with the 

products.csv file, which contains physical product attributes (e.g., weight, dimensions), this allows businesses to 

analyze product complexity and logistics. 

Additionally, the dataset includes user-generated content in the form of product reviews. The order_reviews.csv file 

stores customer feedback, including review scores, timestamps, and written comments. This enables sentiment analysis 

and quality-of-service assessments that can be joined back to specific sellers or products. The granularity and 

interconnectedness of these tables make the dataset well-suited for a variety of machine learning and statistical tasks, 

such as demand forecasting, customer segmentation, product recommendation, delivery time estimation, and CLV 

prediction. Overall, the E-commerce Order Dataset provides a rich, multi-faceted foundation for analyzing operational, 

logistical, behavioral, and financial aspects of a real-world online marketplace. 

 

4. Optimized FT-Transformer model 

The FT-Transformer, or "Feature Tokenizer Transformer," represents a powerful evolution in deep learning designed 

specifically for tabular data like the E-commerce Order Dataset. Unlike traditional neural networks that treat tabular 

inputs as mere vectors passed through dense layers, the FT-Transformer adopts an attention-based architecture 

originally conceived for natural language processing but reformulated to efficiently process structured, non-sequential 

data. This model is particularly suited to the enclosed dataset, which includes diverse feature types—categorical fields 

like payment type or product category, and numerical values such as freight value, item price, or order count. The FT-

Transformer's core innovation lies in converting each feature (not each record) into a learnable token, allowing the 

model to attend to the relative importance of every feature dynamically through a multi-head self-attention mechanism. 

This feature-wise attention is crucial when working with real-world datasets like this one, where certain variables such 

as total monetary value or customer recency may carry more predictive weight than others. 
# Input: Tabular dataset D with N features per customer 

# Output: Predicted Customer Lifetime Value (CLV) 

# Step 1: Data Preparation 

for feature in D: 

    if feature is categorical: 
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        embed_feature = EmbeddingLayer(feature) 

    else if feature is numerical: 

        embed_feature = NumericalProjection(feature) 

    feature_tokens.append(embed_feature) 

# Step 2: Feature Tokenization 

X_tokens = Stack(feature_tokens)  # Shape: (num_features, embedding_dim) 

# Step 3: Apply Transformer Encoder 

for layer in range(num_layers): 

    # Self-Attention 

    attention_output = MultiHeadSelfAttention(X_tokens) 

    # Add & Normalize 

    X_tokens = LayerNorm(X_tokens + attention_output) 

    # Feedforward + Residual 

    ff_output = FeedForward(X_tokens) 

    X_tokens = LayerNorm(X_tokens + ff_output) 

# Step 4: Feature Aggregation 

pooled_output = AttentionPooling(X_tokens)  # or Mean/Max pooling 

# Step 5: Output Prediction 

predicted_CLV = MLP(pooled_output) 

# Step 6: Loss and Training 

loss = MSE(predicted_CLV, true_CLV) 

UpdateWeights(loss) 

# Return predicted CLV 

return predicted_CLV 

For customer lifetime value (CLV) prediction in particular, the FT-Transformer addresses several traditional 

challenges that hinder both tree-based models and standard feedforward neural networks. One significant advantage 

is its ability to capture feature interactions without extensive manual engineering.  

 
Figure 2: Flow chart 

In the E-commerce Order Dataset, interactions such as the joint influence of payment type and purchase frequency or 

the relationship between freight cost and customer region may drive purchasing patterns that influence long-term 

value. While models like Random Forest or Gradient Boosting approximate such interactions through recursive splits, 

the FT-Transformer learns them globally through attention weights, enabling better generalization and interpretability. 

Additionally, unlike LSTMs or RNNs that are more effective for sequential data, FT-Transformer excels at handling 

static, multi-type inputs, where each row is a full representation of a customer profile composed of rich numerical and 

categorical dimensions. 

Another important strength is the FT-Transformer’s inherent support for handling missing values and its robustness to 

overfitting. The model leverages embedding layers for categorical features and incorporates normalization strategies 

like layer norm, dropout, and residual connections which help stabilize training and prevent overfitting—common 

problems when deep learning models are applied to tabular data. The transformer’s attention heads learn to focus on 

the most relevant fields even in the presence of noise or sparsity, which is highly beneficial for the enclosed dataset 
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where not all features may be equally populated or influential. Furthermore, by replacing linear transformations with 

attention-based mapping, the model captures non-linear, high-order dependencies without resorting to deeper network 

structures, which often increase computational costs without corresponding gains in performance. 

In practical terms, the FT-Transformer is advantageous because it requires minimal preprocessing and works well 

across a wide range of customer behavior metrics—recency, frequency, average basket value, payment diversity, and 

product mix. It excels in scenarios where both categorical and continuous data need to be integrated and where 

traditional models struggle to prioritize features appropriately. In comparative studies on benchmark datasets, FT-

Transformer has demonstrated competitive or superior performance over tree-based models like XGBoost and 

LightGBM, especially as the complexity and dimensionality of the dataset increases. Given the high cardinality and 

heterogeneous nature of the E-commerce Order Dataset, and the need to forecast future customer value with accuracy 

and interpretability, the FT-Transformer stands out as a compelling deep learning model that bridges the gap between 

high performance and structured data compatibility. 

 

5. Results and Analysis 

The experiment was conducted using the E-commerce Order Dataset, integrating order, item, and payment data to 

compute CLV per customer. The FT-Transformer model was trained on engineered features including recency, 

frequency, monetary value, and payment diversity. Evaluation was performed using 80:20 train-test split with MSE 

and R² metrics to assess regression accuracy. 

The performance of the FT-Transformer model for Customer Lifetime Value (CLV) prediction on the enclosed E-

commerce Order Dataset was evaluated using the following metrics: 

• Mean Squared Error (MSE): 22,354.17 

Indicates the average squared difference between predicted and actual CLV values. Lower is better. 

• Root Mean Squared Error (RMSE): 149.51 

Provides error magnitude in the same unit as CLV. Lower values show better predictive precision. 

• Mean Absolute Error (MAE): 108.93 

Represents the average absolute difference between predicted and actual CLV values. Less sensitivity to 

outliers than MSE. 

• R² Score (Coefficient of Determination): 0.742 

Suggests that 74.2% of the variance in customer lifetime value was explained by the model. 

These results demonstrate that the FT-Transformer effectively captures complex relationships in customer purchasing 

behavior and outperforms conventional ML baselines for structured tabular CLV prediction 

 
Figure 2. Mean Squared Error (MSE) Comparison 

This graph visualizes the Mean Squared Error for three models: FT-Transformer, Random Forest, and Linear 

Regression. MSE measures the average squared difference between actual and predicted values. The lower the MSE, 

the better the model's predictive accuracy. FT-Transformer outperforms the others with the lowest MSE value. This 

indicates it minimizes error more effectively during prediction. 
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Figure 3. Root Mean Squared Error (RMSE) Comparison 

This bar chart presents the RMSE values across the three models. RMSE provides an interpretable measure of error 

magnitude by taking the square root of MSE. Lower RMSE values reflect better prediction accuracy. FT-Transformer 

again shows superior performance with the smallest RMSE. The large gap between Linear Regression and FT-

Transformer highlights the benefits of deep learning in this context. 

 
Figure 4. Mean Absolute Error (MAE) Comparison 

This figure illustrates the MAE, which computes the average of absolute errors without squaring. It reflects how much 

predictions deviate from actual values on average. FT-Transformer has the lowest MAE, confirming it makes more 

precise predictions. Random Forest and Linear Regression follow, but with significantly higher error magnitudes. 

MAE is especially useful when outliers are not dominant. 

 
Figure 5. R² Score Comparison 

This graph compares R² scores among the models, measuring how well predictions approximate actual outcomes. 

Higher R² indicates more variance explained by the model. FT-Transformer scores around 0.75, outperforming both 

Random Forest and Linear Regression. This suggests that FT-Transformer better captures patterns in customer lifetime 

value prediction and generalizes more effectively.. 

 

6. Discussion  

The analysis of customer lifetime value (CLV) prediction presented in this study underscores the pivotal role of 

advanced deep learning models in effectively capturing the complex relationships inherent in e-commerce data. 

Traditional models like Linear Regression and ensemble techniques like Random Forest, while competent, are often 

limited in their ability to generalize over high-dimensional, heterogeneous, and temporal data. This is where the FT-

Transformer model demonstrates significant merit. Designed specifically for tabular data, FT-Transformer leverages 

the power of attention mechanisms to identify subtle feature interactions, allowing for superior representation learning. 

The model’s architecture, unlike conventional feedforward networks, does not assume linearity or fixed-order 

dependencies, which enables it to learn long-range dependencies and adapt to feature importance dynamically. 
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From a performance standpoint, FT-Transformer consistently outperformed baseline models across all major metrics 

including R² score, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). 

Specifically, FT-Transformer achieved an R² score of approximately 0.75, indicating that it explains a substantial 

proportion of the variance in the CLV data. Its MAE and RMSE values were significantly lower than those of Random 

Forest and Linear Regression, suggesting greater robustness in handling outliers and minimizing prediction deviation. 

These results confirm that FT-Transformer provides a more stable and accurate estimation of customer value, a critical 

element for effective customer segmentation, targeted marketing, and revenue forecasting. 

Moreover, the findings suggest that incorporating temporal purchase behaviors, product diversity, and customer-level 

metadata into a model with attention mechanisms enhances learning capability. Traditional models may struggle with 

capturing such complexities unless explicitly feature-engineered, while FT-Transformer learns these patterns directly 

from raw inputs. This substantially reduces the need for manual preprocessing and domain-specific transformations. 

However, it is important to note that the performance gains come at the cost of computational resources and training 

time, which are relatively higher for deep learning models compared to conventional ones. 

In practical business settings, the integration of FT-Transformer into customer analytics pipelines can support strategic 

decision-making. Organizations can deploy the model to identify high-value customers, forecast customer churn, and 

tailor promotions based on expected lifetime value. Future work should consider the integration of additional 

contextual data such as web interaction logs, customer service interactions, and social sentiment, which may further 

boost the model’s predictive capability. Also, real-time adaptation of the model in live business environments can help 

refine performance further and support adaptive, personalized marketing strategies. 

 

7. Conclusion and Future scope  

This study demonstrates the efficacy of the FT-Transformer model for Customer Lifetime Value (CLV) prediction 

using a real-world e-commerce dataset. The model’s ability to dynamically attend to feature importance and handle 

complex relationships in tabular data allows it to outperform traditional machine learning methods such as Random 

Forest and Linear Regression. Across all key evaluation metrics—R², MAE, RMSE, and MSE—FT-Transformer 

exhibited superior performance, highlighting its robustness and adaptability in modeling customer behavior patterns. 

By leveraging attention mechanisms and tokenization strategies tailored to structured data, the FT-Transformer 

provides a more granular and accurate understanding of customer value, enabling e-commerce platforms to make data-

driven decisions with confidence. 

The results validate the model’s capability to support customer segmentation, targeted marketing, and revenue 

projection tasks. Not only does it reduce the prediction error significantly, but it also automates the learning of feature 

interactions that are often difficult to capture through manual engineering. This makes it an invaluable asset for 

businesses looking to optimize customer engagement strategies based on long-term value rather than short-term 

transactions. 

Looking ahead, several directions can enhance the utility of this model further. Incorporating real-time streaming data, 

such as browsing sessions or transactional logs, could allow the model to make dynamic CLV predictions that evolve 

with customer behavior. Additionally, fusing textual data (e.g., reviews, support tickets) and unstructured data (e.g., 

clickstream, geolocation) may improve prediction accuracy and customer profiling. From a methodological 

perspective, exploring hybrid transformer architectures with temporal modules or integrating reinforcement learning 

for adaptive learning could open new research avenues. Lastly, deploying FT-Transformer in live customer 

management systems with feedback loops may help personalize marketing interventions in real-time, further boosting 

retention and profitability.. 
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