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ABSTRACT 
 
The purpose of the study is to evaluate and model the influencing factors that act as facilitators and 
inhibitors for consumers' adoption of conversational agents. The identified variables are then 
modelled into a hierarchical framework using Interpretive Structural Modelling (ISM) methodology 
to develop a contextual interrelationship among them. Based on extensive literature review and 
experts‟ opinions, the study identifies variables pertaining to the adoption behaviour of AI-based 
conversational agents. The study proposes a dual approach to establish and explain the behavioural 
reasons and causal relationship that exists among the identified variables. First, the study employs 
ISM methodology to examine the interrelationship among the identified fundamental variables, 
which results in a digraph specifying hierarchical levels. Second, MICMAC analysis has been 
performed to categorise the corresponding variables based on driving power and dependence power. 
The six-layered interpretive structural model reveals that social influence plays a pivotal role in the 
adoption phenomenon. The model further demonstrates that perceived anthropomorphism, 
perceived intelligence, and perceived personalisation are major drivers for the evaluation of 
functionality and value of conversational agents. Additionally, MICMAC analysis shows three 
distinct clusters in which variables are classified based on dependence powers and driving power. 
The foremost contribution of the current research is the development of the hierarchical model of the 
variables that shape the adoption decision. The findings may aid practitioners in incorporating 
human-like qualities and personalized features to ensure prompt functionality and a better 
experience for the users. This model will help to extend the adoption models by incorporation of 
contextual variables and also by determination of their dependence and driving power. 
 

Keywords Artificial intelligence. Conversational agents. Communication. Conversation. Adoption 
behaviour. Human-computer interaction. Interpretive Structural Modelling (ISM). MICMAC. 

Strengthening variables. 

 
1. Introduction   
AI-based conversational agents are one of the 
emerging technologies which have rapidly 
gained wider acceptability and popularity 
among people. Today, as never before, people 
are more inclined to participate in tangible 
communication with the conversational agents 
and are willing to engage frequently while 

navigating through web pages (Moriuchi, 
2020). In general, conversational agents are 
defined as intelligent software that makes 
human-computer interaction possible by 
utilizing natural language processing and a 
touch-based interface (Paay et al., 2020).  They 
can understand spoken language and use 
speech communication as user interface 
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(Pitardi & Marriott, 2021). Also, these are 
characterized as personalized systems, 
encompassing digital assistants, chatbots, 
voice assistance, and virtually embodied 
avatars (Araujo, 2018; Balakrishnan et al., 
2021). These agents allow for extensive 
applications to consumers, beginning from 
personal task management (to schedule 
appointments, manage calendar, send text 
messages, make and receive calls, and 
navigate routes and directions) to highly 
sophisticated functions and device 
integrations (healthcare assistance, automated 
homes, conversational commerce, and 
customized entertainment) (Baier et al., 2018; 
Paay et al., 2020). Moreover, this technology 
also offers businesses a wide array of 
opportunities to integrate conversational 
agents into their operations with the aim of 
achieving productive gains (Baier et al., 2018). 
Accordingly, conversational agents have been 
predominantly harnessed in different fields, 
which include education, banking, healthcare, 
social media, retail, e-commerce, business, 
hospitality, and tourism  (Beinema et al., 2021; 
Marikyan et al., 2022; Moriuchi, 2019; Rese et 
al., 2020; Shamsi, Al-Emran, & Khaled 
Shaalan, 2022; Trivedi, 2019; Zarouali et al., 
2018).  
 
The recent forecast reveals that the 
conversational agents market size is estimated 
at USD 6.94 Billion in 2021 and is predicted to 
grow to USD 54.35 Billion by 2030 (Verified 
market research, 2022). Owing to its massive 
demand, conversational agents‟ adoption has 
been a focal point of IoT research related to 
technology adoption (Kasilingam & Krishna, 
2020; Pitardi & Marriott, 2021). Researchers 
have majorly identified and reported 
antecedents of conversational agent adoption 
through many theories (Fernandes & Oliveira, 
2021).  
 
In particular, the extant literature explores 
how consumers evaluate and engage with 
technology and highlight the significance of 
functionality, design, usage (Balakrishnan & 
Dwivedi, 2021), humanness perception 
(Araujo, 2018), and social and personal 
motivation (Go and Sundar, 2019) in 
explaining technology adoption. Despite the 
focus offered on the research of conversational 
agents and the proliferation of their adoption 
as well as future growth, there is a need for 
additional research on AI-based 

conversational agents since the device and 
software are constantly improving (Kääriä, 
2017).  
 
In this regard, Malodia et al. (2022) 
emphasized the need to cognize the 
psychological determinants that initiate trust, 
innovativeness, and risk perception, which 
may offer potential novel insight about the 
consumer experience. Further, Vlačić et al. 
(2021) called for the investigation of cognitive 
and relational elements such as humanness 
and intelligence of conversational agents 
because these attributes are crucial to 
determine usage and adoption patterns. 
 
On the other hand, the literature stands scarce 
on the possible reasons and outcomes for 
consumer decision avoidance (Malodia et al., 
2022) and deserves more attention from 
scholars and practitioners. Since 
conversational agents are relatively new and 
the research pertaining to their adoption has 
just commenced, Fernandes and Oliveira 
(2021) have urged to establish and develop of 
comprehensive models explaining their 
adoption phenomenon. In line with this. 
 
Vimalkumar et al. (2021) suggested developing 
a theory-based understanding to research 
beyond the technological approach to identify 
the major antecedents that reflect the changing 
attitude of consumers towards the 
technological advancement. Therefore, the 
current study aims to bridge these gaps by 
identifying the strengthening variables leading 
to consumer adoption of conversational 
agents, developing a contextual 
interrelationship among them, and 
establishing a hierarchical theoretical 
framework using ISM methodology. For this 
purpose, the study has framed research 
questions which are as follows:  
 
Q1. What are the crucial factors that explain 
the consumer adoption intention of 
conversational agents? 
 
Q2. What are the interrelationships among the 
recognized factors using the MICMAC 
technique?  
 
Q3. What is the hierarchical framework of the 
contextual variables that will provide 
strengthening levels based on dependence and 
driving power?  
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The current research is structured as follows: 
Section 2 describes and highlights the 
literature pertaining to contextual variables of 
adoption behaviour. Then, section 3 provides 
with solution methodology adopted for this 
paper, and accordingly, section 4 proposes the 
ISM development and procedural methods. 
Section 5 presents the MICMAC analysis and 
resultant ISM model. Lastly, Section 6 
discusses results and concludes with the 
study's limitations and future directions.  
 
2. Literature Review 
The exponential growth of human-computer 
interaction has attracted the attention of both 
consumer behaviour and information system 
researchers. Numerous studies reveal the 
implication of the adoption behaviour of new 
technologies. Notably, authors have studied 
the adoption and usage of conversational 
agents in sales, marketing, and customer 
service, where they have conceptualized 
behavioural patterns of consumers. Following 
the literature review, the study has identified 
15 variables that act as the determinants of the 
adoption behaviour for conversational agents. 
The identified variables are presented in 
Appendix A1 and are discussed in the 
following subsections.  
 
2.1 Value of openness to change 
Values are defined as motivational factors that 
encourage people to strive and achieve the 
required results (Schwartz, 2006). According 
to Westaby (2005), the reasons for behaviour 
do not arise in isolation rather, they emerge 
from values ingrained in an individual. Thus, 
values administer a path for an individual to 
investigate and choose the alternative 
behaviour. Moreover, past literature evidence 
that values influence attitude formation 
towards adopting new technology (Pillai & 
Sivathanu, 2020; Schwartz, 2012). Besides this, 
BRT and the theory of explained behaviour 
advocated that values help explain the 
adoption behaviour of new innovation 
(Pennington & Hastie, 1988; Westaby, 2005). 
Therefore, this construct is of crucial 
importance for the current study. 
 
2.2 Perceived anthropomorphism 
Based on the definition given by Kim and 
Mcgill (2018), perceived anthropomorphism 
refers to the human likeness of inanimate 
objects. More specifically, it is stated as the 
attribution of humanoid qualities, appearance, 

and traits to non-human entities (Troshani et 
al., 2020). Prior research conceptualizes 
anthropomorphism as a crucial and 
strengthening factor in creating positive 
perception and trust in the voice assistants 
(Pillai & Sivathanu, 2020). Hence, it is pivotal 
in the creation of attitude toward 
conversational agents and thereby leads to its 
adoption (R. Cai et al., 2022). Moreover, 
several studies have found that higher 
anthropomorphism leads to better interaction, 
greater enjoyment, and improved user 
experience (D. Cai et al., 2022; Moussawi et al., 
2021).  
 
2.3 Perceived intelligence 
Perceived Intelligence is described as the 
perception about efficiency with which an 
assigned role is operated with subsequent 
commands. Particularly, a conversational 
agent is perceived as intelligent if it possesses 
the ability to sense, comprehend, and function 
as per the user‟s requests. In research by 
Moussawi and Benbunan-fich (2021), 
perceived intelligence is positively associated 
with technology usefulness and ease of use. 
Therefore, it is argued as the determinant 
characteristic for the acceptance of voice 
assistants (Ha et al., 2020).  
 
2.4 Performance expectancy  
In the literature on human technology 
interaction, performance expectancy displays 
the perception of users towards voice 
assistant‟s ability to facilitate greater 
performance and productivity (Aw et al., 2022; 
Venkatesh et al., 2003). It is further articulated 
as a prominent exogenous variable, which 
relates to users‟ evaluation of the cost and 
benefit of voice assistant usage, ultimately 
leading to adoption decisions. Based on the 
UTAUT model, Performance expectancy has 
been generally found to positively affect 
perceived benefits and usage intention 
(Melián-gonzález et al., 2019). 
 
2.5 Social influence  
Another vital construct in the UTAUT theory 
is social influence. Social influence is the 
extent to which users‟ social network guides 
voice assistants' utility and usage patterns (Lu 
et al., 2019). Furthermore, social influence is 
recognized as a source that helps to develop 
effective negotiation between self and social 
interest (Dogra and Kaushal, 2021; Howard 
and Howard, 2012). Many researchers claim 
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that social influence improves consumers‟ 
trust and leads to usage intention (Mcknight et 
al., 2020; Mostafa & Kasamani, 2021). Hereby, 
this study considers social influence as an 
important antecedent of technology adoption 
decisions.  
2.6 Perceived usefulness  
The construct Perceived usefulness has been 
developed from the Technology acceptance 
model (TAM) and concentrates on the creation 
of subjective perception on individual 
adoption and usage of voice assistants (Davis, 
1989). It is acknowledged to have a direct 
effect on the creation of attitudes towards 
adoption decisions (Pillai & Sivathanu, 2020). 
The extant literature provides evidence 
supporting the association between usefulness 
and individuals‟ behavioural intention 
(Belanche et al., 2019; Hsieh & Lee, 2021a; 
Shamsi, Al-Emran, & Shaalan, 2022).  
 
2.7 Perceived ease of use  
Perceived ease of use is articulated as the 
degree to which individuals perceive 
innovation as free from effort (Davis, 1989). 
Researchers have established that ease of use 
strongly impacts attitude and its relative 
influence on the adoption intention (Shaker et 
al., 2021). Additionally, researchers claim that 
behavioural intention increases only when a 
minimum effort is utilized for using the 
technology (Coskun-setirek & Sona 
Mardikyan, 2017; Sorensen & Jorgensen, 2021). 
Thus, perceived ease of use is considered a 
determinant for this study.  
 
2.8 Perceived personalization 
Perceived personalization is defined as the 
extent to which the voice assistants are 
considered competent in fulfilling users' 
tailored requirements (Wang et al., 2022). As 
per Lee and Cranage (2011), personalization is 
the degree to which the voice assistant 
anticipates the user‟s behavioural pattern, 
understands their requirement and provides a 
necessary output when requested. In addition, 
prior research demonstrates that perceived 
personalization generates higher cognitive 
trust for new technologies, thus positively 
influencing adoption intention (Chaves & 
Gerosa, 2021; Shi et al., 2021).          
 
2.9 Perceived enjoyment   
Perceived enjoyment is defined as the pleasure 
and satisfaction the users experience with the 
usage of the technology (C. Hsu & Lin, 2016). 

Past literature identifies that enjoyment is 
influenced by the helpfulness of voice 
assistants in delivering clear answers and 
convenience while operating a device 
(Sorensen & Jorgensen, 2021). Moreover, 
perceived enjoyment is claimed to have a 
significant relationship with behavioural 
intention, provided that the new technology 
functions effectively and operationalises 
emotional connection with consumers 
(Sorensen & Jorgensen, 2021). Thus, perceived 
enjoyment in this study is poised as a crucial 
psychological antecedent in the technology 
adoption context.  
 
2.10 Perceived value 
Perceived value is demonstrated as the 
difference between perceived cost and 
perceived benefit deriving from a product. A 
positive change in perceived value is found to 
significantly influence technology adoption 
decisions (C. L. Hsu & Lin, 2021). It is also 
considered as consumers' assessment of 
quality, usefulness, and conformity of goal 
achievement. As a result, perceived value 
shapes attitude formation towards the 
behavioural intention of new technology, 
making it a significant and essential variable 
for the study.    
  
2.11 Perceived risk  
Perceived risk is a determinant that entails 
several kinds of risks like performance risk, 
time risk, and security risk. It is considered as 
a major inhibiter to the adoption intention of 
voice assistants (Hubert et al., 2018). 
Moreover, it is also indicative of anxiety, 
discomfort, and fear of loss an individual 
experiences in an adoption decision 
(Featherman & Pavlou, 2003). Featherman and 
Pavlou (2003) argue that increased risk lowers 
the perceived usefulness of the new 
technology and thus shapes the attitude 
towards value accordingly. Thus, making it a 
strong predictor for the current study.  
 
2.12 Traditional barrier  
As per Ram and Sheth (1989), resistance 
towards innovation is a common instinctive 
behaviour, whereby consumer experiences 
psychological conflict in belief structure. Also, 
it is argued that a behavioural constraint arises 
when new technology necessitates users to 
change from accustomed traditions. The 
greater the change in tradition, the greater the 
resistance the user will face during the 
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adoption of an innovation. Earlier literature 
demonstrates the implications of traditional 
barriers in multiple fields like banking, self–
service technologies, IoT, tourism, and 
hospitality (Featherman & Pavlou, 2003; 
Vimalkumar et al., 2021). In sum, it 
substantially influences the adoption intention 
of the new technology. 
 
2.13 Image barrier  
Image barrier as a psychological construct is 
created due to a lack of information, 
stereotyped thinking and unfavourable 
associations (Ram & Sheth, 1989). Shimp and 
Bearden (1982) has described the image barrier 
as an extrinsic cue that impacts individual 
assessment of innovation. Image barrier 
creates a certain perceptual difficulty and 
complexity; hence, considered an essential 
barrier in the adoption intention of new 
technology.   
 
2.14 Attitude towards conversational agents 
Eagly and Chaiken (1998) defines attitude 
towards adoption as the psychological 
tendency to evaluate certain innovation with 
some amount of like or dislike. Moreover, it is 
considered as the individual‟s positive or 
negative notions about a particular behaviour. 
Owing to this, individuals are determined to 
undertake and evaluate a specific behaviour 
when they have positive feelings towards 
innovation. Therefore, attitude is argued to 
play a vital role in explaining consumer 
behaviour. This is confirmed by Kasilingam 
and Krishna (2020), who state that attitude 
positively correlates with behavioural 
intentions.  
 
2.15 Adoption intention of conversational agents 
Adoption intention refers to the likeliness of 
an individual to adopt and use new 
technology in the future (Coskun-setirek & 
Sona Mardikyan, 2017; Sorensen & Jorgensen, 
2021). In addition, it is considered as the 
individual‟s purposeful and conscious action 
to undertake a particular behaviour. 
According to Hsu and Lin (2016), perceived 
value has a strong association with 
behavioural intention. Moreover, some studies 
have also found that the high-value perception 
leads to greater chances of adoption (C. Hsu & 
Lin, 2016; Johnson et al., 2018). Based on this, it 
is crucial to consider adoption intention for the 
current study.   
 

3. Research Methodology  
The Interpretative Structural Modelling (ISM) 
methodology was employed for the current 
study. The following section presents the 
meaning, process, and principles to conduct 
the proposed ISM approach.  
 
3.1 Meaning of ISM 
Interpretative Structural Modelling (ISM) is 
primarily an interpretive learning process that 
portrays variable order and transforms them 
into an organized framework (Mathiyazhagan 
et al., 2013). ISM was conceptualized by John 
Nelson Warfield (Warfield, 1973), which is 
fundamentally a systematic application of 
graph theory (Sindhu et al., 2016). ISM is a 
qualitative method that transforms complex 
articulated structural models into well-defined 
conceptual models illustrating 
interrelationships among variables (Gupta & 
Sahu, 2013; Sushil, 2012). The resultant model 
helps in providing a solution to the defined 
problem and objectively presents a 
comprehensible system (Sindhu et al., 2016). 
ISM follows a structured protocol, which is 
described below: 
 
(1) Defining the variables and constructing 

structured self-interaction matrix (SSIM): 
ISM begins with the identification of 
variables pertaining to the research 
agenda or problem from the literature 
survey. After having a defined set of 
variables, a pairwise relationship matrix is 
prepared by a group judgment of experts 
(Mandal & Deshmukh, 1993; Singh & 
Samuel, 2018).   
 

(2) Reachability Matrix: Results of SSIM are 
further replaced by binary numbers to 
attain the initial reachability matrix. Next, 
using the approach of transitivity, the final 
reachability matrix is derived. Transitivity 
illustrates that if X is associated with Y 
And Y is associated with Z, then X is 
certainly associated with Z.  

 
(3) Level Partitioning: From the reachability 

matrix, the results are then apportioned 
into distinctive levels. 

 
(4) ISM Model: The results of partitioned 

levels are then transfigured as a digraph, 
which is a structured model of the 
proposed question. 
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Fig. 1 Conceptual diagram of the methodology 
 
4. Model development 

The Process of ISM begins with identifying the 
variables and determining the contextual 
relationships among them. The ISM approach 
utilizes the practical knowledge and 
understanding of the experts in a particular 
area (Dubey & Ali, 2014; Yadav & Sagar, 2021). 
The discussion with experts dispels variables 
and the interrelationship that exists between 
them. Several techniques like literature 
surveys, open brainstorming sessions, 
questionnaires, open discussion among expert 
panels, workshops, nominal group techniques, 
and idea engineering workshops can be opted 
for the identification process of contextual 
variables (Ali et al., 2018; Mani et al., 2016). 
 

 
 

Fig. 2 Flow diagram for ISM 

4.1 Structured self-interaction matrix (SSIM) 
In accordance with ISM methodology, the 
contextual relationship between the variables 
was determined by expert opinion. The SSIM 
was developed after comparing each row with 
each column and assigned a code as per the 
defined set (V, A, X, O). The trajectory of the 
interrelationship among variables is 
represented by following the symbolic 
identifiers: 
 

(1) V – variable i will help to achieve 
variable j; 

(2) A - variable j will help to achieve 
variable i; 

(3) X - variable i and j will help achieve 
each other; and 

(4) O - variable i and j are unrelated. 

 
According to the earlier stated principles, the 
SSIM was formulated, as presented in Table 1. 
For the development of SSIM, the number of 
pairwise comparisons is denoted as ((N)*(N-
1)/2), where N is the number of key factors.  
 
4.2 Reachability Matrix 
After the formulation of SSIM, the following 
stage involves the transformation of SSIM into 
the initial reachability matrix (IRM). IRM is 
defined as a binary matrix wherein the codes 
are substituted in the form of 0 and 1. 
Following are the rules for the transformation 
of SSIM into IRM. 
 

(1) If the code in the SSIM cell (i, j) is V, 
then the (i, j) value becomes 1 and the (j, 
i) value becomes 0 in the IRM.  

(2) If the code in the SSIM cell (i, j) is A, 
then the (i, j) value becomes 0 and the (j, 
i) value becomes 1 in the IRM.  

(3) If the code in the SSIM cell (i, j) is X, then 
the (i, j) value becomes 1 and the (j, i) 
value becomes 1 in the IRM. 

(4) If the code in the SSIM cell (i, j) is O, 
then the (i, j) value becomes 0 and the (j, 
i) value becomes 0 in the IRM. 

 
The IRM is reported in Table 2, which is in 
accordance with the above-stated principles.  
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Table 1: Structural self-interaction matrix (SSIM) 
 

Variables 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1. Value of Openness to change V V V V V V V V V V V V V V 

2. Perceived Anthropomorphism V V V V O O V O V O A O O 
 

3. Perceived Intelligence V V V V V V V O O V A V 
  

4. Performance Expectancy V V V V V V A A A X A 
   

5. Social Influence V V V V V V V V O V 
    

6. Perceived Usefulness V V X X X X V O A 
     

7. Perceived Ease of Use V V X X X V V O 
      

8. Perceived Personalisation V V V V O V V 
       

9. Perceived Enjoyment V V X X A X 
        

10. Perceived Value V V X X X 
         

11. Perceived Risk V V V X 
          

12. Traditional Barrier V V X 
           

13. Image Barrier V V 
            

14. Attitude towards Conversational 
Agents 

V 
             

15. Adoption intention of 
Conversational Agents              

 

Table 2: Initial reachability matrix (IRM) 
 
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Driving 

Power 

1. Value of Openness to 
change 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 

2. Perceived 
Anthropomorphism 

0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 7 

3. Perceived Intelligence 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 10 

4. Performance Expectancy 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 8 

5. Social Influence 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 13 

6. Perceived Usefulness 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 9 

7. Perceived Ease of Use 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 10 

8. Perceived Personalisation 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 8 

9. Perceived Enjoyment 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 7 

10. Perceived Value 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 8 

11. Perceived Risk 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 9 

12. Traditional Barrier 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 9 

13. Image Barrier 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 8 

14. Attitude towards 
Conversational Agents 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 

15. Adoption intention of 
Conversational Agents 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Dependence Power 1 3 3 8 2 10 6 3 12 12 9 13 13 14 15 
 

 
Following this, the IRM is transformed as a 
final reachability matrix (FRM) post removal 
of transitivity with the help of specified rules. 
Firstly, the initial reachability matrix is 
multiplied by itself to arrive at transitivity. 

Next, in the resulted matrix the values, which 
are more than 1 are changed into 1. This 
procedure is followed up till transitivity is 
derived, which produces the FRM, reported in 
Table 3.  
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4.3 Level Partitions (LP) 
The FRM is used to derive the reachability and 
antecedent set for each factor (Warfield, 1974). 
The factors that may assist in attaining the 
remaining factors are included in each factor's 
reachability set. A factor solely, plus another 
factor that could aid in reaching them, 
together make up the antecedent set. In 
addition, for each factor, the intersection sets 
are obtained. The factors for which the 
reachability and the intersection set are 

identical occupy the top tier of ISM 
hierarchical framework. Beyond its own tier, 
the top-tier factor would not assist in 
achieving any other factor. Consequently, this 
top-tier factor is identified and then 
distinguished and set apart from the other 
factors. In a similar manner, the subsequent 
top-tier factors are recognized for the next 
levels until all the factors obtain a certain level. 
The final ISM model and the digraph are 
created using these specified levels.  

Table 3: Final reachability matrix (FRM) 
 
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Driving 

Power 

1. Value of Openness to 
change 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 

2. Perceived 
Anthropomorphism 

0 1 0 1* 0 1* 1 0 1 1* 1* 1 1 1 1 11 

3. Perceived Intelligence 0 0 1 1 0 1 1* 0 1 1 1 1 1 1 1 11 

4. Performance Expectancy 0 0 0 1 0 1 1* 0 1* 1 1 1 1 1 1 10 

5. Social Influence 0 1 1 1 1 1 1* 1 1 1 1 1 1 1 1 14 

6. Perceived Usefulness 0 0 0 1 0 1 1* 0 1 1 1 1 1 1 1 10 

7. Perceived Ease of Use 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 10 

8. Perceived Personalisation 0 0 0 1 0 1* 1* 1 1 1 1* 1 1 1 1 11 

9. Perceived Enjoyment 0 0 0 1 0 1* 1* 0 1 1 1* 1 1 1 1 10 

10. Perceived Value 0 0 0 1* 0 1 1* 0 1 1 1 1 1 1 1 10 

11. Perceived Risk 0 0 0 1* 0 1 1 0 1 1 1 1 1 1 1 10 

12. Traditional Barrier 0 0 0 1* 0 1 1 0 1 1 1 1 1 1 1 10 

13. Image Barrier 0 0 0 1* 0 1 1 0 1 1 1* 1 1 1 1 10 

14. Attitude towards 
Conversational Agents 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 

15. Adoption intention of 
Conversational Agents 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Dependence Power 1 3 3 13 2 13 13 3 13 13 13 13 13 14 15  

 
 

 
 

Fig. 3 Interpretative structural model 
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5. MICMAC analysis 
Matrice d'impacts croisés multiplication 
appliquée á un classment (MICMAC) is a 
principle approach which is based upon 
matrix multiplication properties (Nandal et al., 
2019). MICMAC investigates the driving 
power and dependence power of the variables, 
which assists in identifying and classifying 
crucial variables, thereby disseminating the 
adoption enablers of the voice assistants. In 
the present study, using driving and 
dependence power, the variables are 
categorized as follows:  
 
(1) Autonomous variables: Quadrant 1 

represents the autonomous variables. 
These are identified to possess low 
dependence and low driving power. They 
are completely independent and fairly 
disassociated from the arrangement.       

(2) Dependent Variables: Quadrant 2 
represents the dependent variables. These 
are identified to possess high dependence 
and low driving power.  

(3) Linkage Variable: Placed at Quadrant 3, 
these are represented to possess high 

dependence and high driving power. They 
pose to have an effect not only on other 
variables but can also be dependent on 
them.   

(4) Independent Variables: Quadrant 4 shows 
independent variables, which possess low 
dependence and high driving power.    
 

Based on the principles mentioned above, the 
MICMAC graph (Fig. 4) is generated where x - 
axis denotes dependence power and y - axis 
denotes the driving power of the variable. This 
graph illustrates the hierarchy of variables and 
generates a conceptual model.  
 
6. Discussions and Conclusions 

The present study examines the 
interrelationship between several factors 
pertaining to the adoption of conversational 
agents. For this purpose, the study uses an 

ISM methodology that provides valuable 
insights and develops a structured framework 
of key enablers and barriers to adoption 
intention. According to the ISM framework 
(Fig. 3), the value of openness to change is at 
the sixth level, which posits at the base level of 

 
 

Fig. 4 MICMAC graph 
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the hierarchical model. The value of openness 
primarily helps to determine the extent of 
social influence on individuals. Level fourth of 
the ISM framework consists of perceived 
anthropomorphism, perceived 
personalization, and perceived intelligence. 
These are arguably critical and encompass the 
major drivers for the evaluation of 
functionality and value of conversational 
agents. Further, all the eight factors at level 
three are mainly responsible for the formation 
of attitudes towards conversational agents. 
Based on the attitudes formed by the 
customers (Level 2), this then shapes the 
adoption decision of conversational agents 
(Level 1).   
 
Subsequently, MICMAC analysis is employed 
to ascertain the driving and dependence 
power of different variables in the framework. 
The resulted MICMAC graph in Fig. 4 
presents four quadrants which comprise 
various clusters based on driving power and 
dependence power. The first quadrant shows 
variables characterized by low driving power 
and low dependence power. Based upon 
study analysis, there exist no variables that fall 
in this quadrant, which implies that among the 
identified variables, none indicate low 
dependence and low driving power. The 
second quadrant represents variables which 
possess low driving power and high 
dependency and are referred as the dependent 
variable. These variables drive the topmost 
level due to their high level of dependency. In 
the present study, attitude towards 
conversational agents and adoption intention 
towards conversational agents capitulate at 
the topmost level and fall in the second 
quadrant. The third quadrant reveals linking 
variables that possess high dependence and 
high driving power. From the MICMAC 
diagram, performance expectancy, perceived 
usefulness, perceived ease of use, perceived 
enjoyment, perceived value, perceived risk, 
traditional barrier, and image barrier are 
ascertained as linkage variables. Lastly, the 
fourth quadrant reports independent 
variables, which comprise clusters of variables 
such as the value of openness to change, social 
influence, perceived anthropomorphism, 
perceived personalisation, and perceived 
intelligence. These variables are recognised to 
possess low dependence and high driving 
power. Overall, the resultant model portrays 
the key strengthening variables that will 

enable the production of superior operational 
and serviceable conversational agents 
redefining the current design configuration.  
 
6.1 Theoretical Contribution 
The current study contributes to the adoption 
literature by identifying prominent variables 
and determining their corresponding 
influence on consumer adoption decisions. 
The study provides context-specific variables 
instead of broadly construed beliefs. The 
identified model suggests how these variables 
are interrelated, which broadens the 
understanding of the features and 
functionality of conversational agents. By 
doing so, the study marks a substantial 
contribution by conceptualizing contextual 
variables and conveying their pivotal role in 
the formation of attitudes towards the decision 
to adopt conversational agents.  
 
First, using ISM methodology, the findings 
reveal that perceived anthropomorphism, 
perceived personalization, and perceived 
intelligence are the strengthening antecedents 
of adoption behaviour in the discourse of 
conversational agents. Consequently, this 
amplifies the exploratory power of existing 
technology adoption models like TAM and 
UTAUT and thereby expands the body of 
literature. Moreover, models based on 
psychological theories, i.e., TPB and TRA, 
have focused primarily on psychological 
constructs (subjective norm, attitude, 
behavioural intention) without fully 
encapsulating other para-social constructs of 
AI-based technologies. While developing a 
context-specific framework that inspects not 
only utilitarian but also social, relational, and 
technological drivers, the study contributes to 
the holistic understanding of conversational 
agents‟ adoption. Second, the study further 
postulates social influence as a pertinent 
antecedent to promote para-social interaction 
and thus establishing belief and affirming the 
usefulness of conversational agents. This 
finding enhances the understanding of the 
influence of social networks and validates the 
assertion by Dogra and Kaushal (2021) that 
social status positively influences behavioural 
intentions.  Third, most prior studies on the 
technology adoption phenomenon have used 
a single theoretical model (Dogra and Kaushal, 
2021; Sorensen and Jorgensen, 2021), whilst 
this study has developed an integrated 
framework that highlights the role of the 
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cognitive constructs and behavioural 
constructs that determine the technology 
adoption process. Thus, this study contributes 
to the literature by underpinning the 
behavioural mechanism of attitude formation 
in the context of technology adoption.  
 
Finally, the identification and classification of 
facilitators and barriers from extensive 
literature review and expert opinion provide 
an orientation to future researchers to expedite 
the research on adoption behaviour and 
address the barriers that inhibit consumers to 
adopt AI-based technology. In parallel to this, 
the SSIM matrix encloses the interrelationship 
that subsists between the antecedents, which 
helps outlay their significance. 
Correspondently, the proliferated variables 
are classified on the basis of driving power 
and dependence power which exhibit the 
prime factors for the adoption phenomenon.  
 
6. 2 Practical Contribution 
Whilst this study provides evidence to the 
extant literature, it also offers additional 
insight to conversational agent design 
developers. For companies to benefit, the 
developers should incorporate human-like 
characteristics and personalized features, 
which ensures prompt functionality to the 
users. Consequently, the aforesaid design 
features reassure value and usefulness, which 
diminishes the scope for uncertain outcomes 
and generates compatibility with users. Hence, 
the developers should focus upon these factors 
and provide distinctive offerings to the 
consumers of this technology. Furthermore, 
marketing managers should start stimulating 
social influence and direct their focus on 
developing an effective marketing strategy 
which highlights how conversational agents 
resonates with customers‟ values, needs, and 
lifestyle. Sending signals to the customer 
about the conversational agent‟s features is 
crucial to make customers realise its utility 
and encourage them to use it in daily life. The 
results are also highly useful for brand 
managers and practitioners. Since agents are 
equipped to perform sophisticated functions 
and device integrations, it broadens the 
procedural and operational prospects to tailor 
the agent‟s functionality as per customers‟ 
needs and expectations.  
 
The results would also be helpful for B2C 
practitioners for customer service 

organisations. In order to address customers‟ 
grievances and redressals, the organisation 
may consider using conversational agents for 
business communication and to deliver real-
time solutions beyond business hours. This 
subsequently ensures that AI-powered 
conversational agents bring forth faster 
responses, reducing the waiting time of the 
customer. Moreover, the integration of 
conversation agents in business operations is 
expected to minimise customer service 
overheads. Consequent to the above 
implications, the findings of the study are also 
of substantial utility for the consumers as the 
improvised functionality of agents reduces 
search cost, provisions autonomy, and outlays 
potential benefits expected by them. This 
further ensures to elucidate perceptible 
benefits by providing the consumer a well-
equipped and magnified technology-driven 
experience.  
 
6.3 Limitations and future research directions 
Whilst the study provides evidence of 
interrelationship among behavioural 
constructs, it also acknowledges the following 
limitations. First, the current study primarily 
focuses on the adoption and evaluation of 
conversational agents. Additional work might 
examine post-purchase experience, 
continuation and repurchase intention to 
better understand the consumer purchase 
journey. Second, the current study is an early 
attempt to explain the relationship between 
antecedents and outcomes of consumer 
adoption of conversational agents. Further 
studies can focus on other behavioural and 
situational factors and emphasise 
understanding of conversational agents‟ 
usage. Third, the study does not assure the 
statistical validation of the proposed model. 
Therefore, future research may extend upon 
validating the identified model with the help 
of structural equation modelling (SEM). Also, 
the analytical hierarchy process (AHP) and 
analytical network process (ANP) can be used 
to ascertain the strength of association among 
variables used in this study. Besides this, the 
interpretive ranking process (IRP) may be 
employed to assign ranks to variables 
concerning conversational agent adoption. 
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Appendix A1 

 
Table A1. Enablers and barriers of conversational agents’ adoption  

S. 
No. 

Variables Description References 

 1 Value of 
Openness to 
change 

Values constitute as the initial step towards the 
adoption process. Values sets and administers the 
behaviour and guide towards the decisions 
regarding the adoption of innovation. 

Schwartz (2006), Westaby (2005), 
Schwartz (2012), Pillai and 
Sivathanu (2020), Pennington and 
Hastie (1988)  

 2 Perceived 
anthropomo
rphism 

Anthropomorphism is the attribution of human 
qualities and traits to inanimate objects. It ensures 
efficient interaction and helps in building the 
feeling of social connections. 

Kim and Mcgill (2018), Troshani et 
al. (2020), Pillai and Sivathanu 
(2020), Cai, Li, et al. (2022), 
Moussawi and Benbunan-fich (2021)  

 3 Perceived 
intelligence 

Intelligence is defined as the ability with which a 
device fulfils assigned roles and complete the task 
requested by the user.  

Moussawi and Benbunan-fich 
(2021), Ha et al. (2020) 

 4 Performance 
expectancy 

It refers to the expectations of an individual 
towards the technology to assist in the course of 
completion of the task. 

Venkatesh et al. (2003), Aw et al. 
(2022), Melián-gonzález et al. (2019)  

 5 Social 
influence 

It refers to the influence of environmental 
elements on consumer behaviour. Basically, it 
reflects other beliefs on a particular decision.  

Lu et al. (2019), Howard and 
Howard (2012), Dogra and Kaushal 
(2021), Mcknight et al. (2020), 
Mostafa and Kasamani (2021)  

 6 Perceived 
usefulness 

It is defined as the degree to which conversational 
agent is perceived to be functional and 
advantageous to the user. 

Davis (1989), Hubert et al. (2018), 
Pillai and Sivathanu (2020), Shamsi 
et al. (2022), Hsieh and Lee (2021), 
Belanche et al. (2019) 

 7 Perceived 
Ease of Use 

It refers to the extent to which a conversational 
device is perceived to be effort free and fulfils the 
assigned task.  

Davis (1989), Shaker et al. (2021), 
Coskun-setirek (2017), Sorensen and 
Jorgensen (2021) 

 8 Perceived 
personalisati
on 

Personalisation is defined as the degree to which 
the conversational agent intercepts individual 
usage and operates according to customised 
needs. 

Wang et al. (2022), Shi et al. (2021), 
Chaves and Gerosa (2021) 

 9 Perceived 
enjoyment 

It means the fulfilment, satisfaction, and 
gratification user experiences with the usage and 
possession of the technology. 

Hsu and Lin (2016), Sorensen and 
Jorgensen, (2021) 

 10 Perceived 
value 

Perceived value is defined as the remainder 
arising from perceived cost and perceived benefit 
of adoption and usage of a product. 

Hsu and Lin (2021) 

 11 Perceived 
risk 

Perceived risk refers to the probability of loss 
while in pursuit of a desired outcome during 
technology usage. It is a cumulation of uncertainty 
with the possibility of achieving an outcome.  

Hubert et al. (2018), Featherman and 
Pavlou (2003) 

 12 Traditional 
barrier 

It is psychological resistance that arises from 
cultural change, which inhibits the user from the 
direction of adoption.  

Ram and Sheth (1989) 

 13 Image 
barrier 

It refers to the perceptual notion that gems from 
stereotype thinking thus create an unfavorability.  

Ram and Sheth (1989), Shimp and 
Bearden (1982)  

 14 Attitude 
towards 
Conversatio
nal Agents 

It refers to the tendency of an individual about a 
certain innovation with a notion of approval or 
disapproval.  

Eagly and Chaiken (1998), 
Kasilingam and Krishna (2020) 

 15 Adoption 
intention of 
Conversatio
nal Agents 

It is defined as the subjective probability of user 
engagement regarding a particular product. 

Coskun-setirek (2017), Sorensen and 
Jorgensen (2021), Hsu and Lin 
(2016),  
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Appendix A2 
 

Table A2. Level Partitioning (LP) 

Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 1, 1, 6 

2 2, 1, 2, 5, 2, 4 

3 3, 1, 3, 5, 3, 4 

4 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

5 5, 1, 5, 5, 5 

6 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

7 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

8 8, 1, 5, 8, 8, 4 

9 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

10 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

11 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

12 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

13 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

14 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 2 

15 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 1 
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Table A3. Level Partitioning Iterations 1 

 Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 1, 
 

2 2, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 5, 2, 
 

3 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 3, 5, 3, 
 

4 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

5 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 5, 5, 
 

6 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

7 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

8 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 5, 8, 8, 
 

9 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

10 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

11 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

12 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

13 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

14 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 
 

15 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 1 
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Table A4. Level Partitioning Iterations 2 

 Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 1,   

2 2, 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 5, 2,   

3 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 3, 5, 3,   

4 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

5 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 5, 5,   

6 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

7 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

8 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 5, 8, 8,   

9 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

10 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

11 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

12 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

13 4, 6, 7, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 

14 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 2 

15   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1 
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Appendix A5 
 

Table A5. Level Partitioning Iterations 3 
 Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 1, 
 

2 2, 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 5, 2, 
 

3 3, 4, 6, 7, 9, 10, 11, 12, 13, 1, 3, 5, 3, 
 

4 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

5 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 5, 5, 
 

6 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

7 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

8 4, 6, 7, 8, 9, 10, 11, 12, 13, 1, 5, 8, 8, 
 

9 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

10 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

11 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

12 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

13 4, 6, 7, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 6, 7, 9, 10, 11, 12, 13, 3 

14   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2 

15   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1 
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Table A6. Level Partitioning Iterations 4 

 Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 2, 3, 5, 8, 1, 1, 
 

2 2, 1, 2, 5, 2, 4 

3 3, 1, 3, 5, 3, 4 

4   1, 2, 3, 5, 8, 3 

5 2, 3, 5, 8, 1, 5, 5, 
 

6   1, 2, 3, 5, 8, 3 

7   1, 2, 3, 5, 8, 3 

8 8, 1, 5, 8, 8, 4 

9   1, 2, 3, 5, 8, 3 

10   1, 2, 3, 5, 8, 3 

11   1, 2, 3, 5, 8, 3 

12   1, 2, 3, 5, 8, 3 

13   1, 2, 3, 5, 8, 3 

14   1, 2, 3, 5, 8, 2 

15   1, 2, 3, 5, 8, 1 
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Table A7. Level Partitioning Iterations 5 
 Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 5, 1, 1, 
 

2   1, 5,   4 

3   1, 5,   4 

4   1, 5,   3 

5 5, 1, 5, 5, 5 

6   1, 5,   3 

7   1, 5,   3 

8   1, 5,   4 

9   1, 5,   3 

10   1, 5,   3 

11   1, 5,   3 

12   1, 5,   3 

13   1, 5,   3 

14   1, 5,   2 

15   1, 5,   1 
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Appendix A8 
 

Table A8. Level Partitioning Iterations 6 
 Variables  Reachability Set Antecedent Set  Intersection Set  Level 

1 1, 1, 1, 6 

2   1,   4 

3   1,   4 

4   1,   3 

5   1,   5 

6   1,   3 

7   1,   3 

8   1,   4 

9   1,   3 

10   1,   3 

11   1,   3 

12   1,   3 

13   1,   3 

14   1,   2 

15   1,   1 
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