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Abstract--- This works deals with study of a nonlinear 

singularly perturbed parameterized boundary value 

problem. The problem is solved by a backward Euler 

method on an non-uniform mesh. The nonuniform mesh is 

constructed by using the principle of equidistribution of a 

monitor function. A comparative is presented for the 

different choices of the monitor function.  
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I. INTRODUCTION 

 Here, the following singularly perturbed 

parameterized boundary value problem (SPBVP) is 

considerd on the domain Ω = (0,1) : 

 

{
𝑇𝑢(𝑥) ≡ 𝜀𝑦′(𝑥) + 𝑓(𝑥, 𝑦, 𝜆) = 0,   𝑥𝜖Ω ,

𝑢(0) = 𝑎,   𝑢(1) = 𝑏
        (1.1) 

 

where0 < 𝜀 ≪ 1 is the singular perturbation 

parameter, 𝜆 is the control parameter 𝑎, 𝑏 are 

constant. 𝑓(𝑥, 𝑦, 𝜆) is assumed to be sufficiently 

smooth and satisfies following assumption: 

 

{
 
 

 
 

𝑓(𝑥, 𝑦, 𝜆), 𝜖𝐶3([0, 1] × ℝ2),

0 < 𝛼 ≤
𝜕𝑓

𝜕𝑦
≤ 𝛼∗ < ∞    (𝑥, 𝑦, 𝜆)𝜖[0, 1] × ℝ2

0 < 𝑚 ≤ |
𝜕𝑓

𝜕𝜆
| ≤ 𝑀 < ∞    (𝑥, 𝑦, 𝜆)𝜖[0, 1] × ℝ2

(1.2) 

 

The above  assumptions ensured the existence of 

unique solution of the BVP  (1.1) (refer [1, 7, 8]). 

The BVP (1.1) exhibit boundary layer of width 

𝑂(𝜀) near 𝑥 = 0. The parameterized BVP has many 

application in modeling the various physical 

phenomena.  

 

In last few years parameterized boundary value 

problems have been considered by many 

researchers. A uniformly convergent first order 

method difference method is developed on a 

Shishkin mesh for (1.1) in Amiraliyevet. al.[1] and. 

Cen  [2] developed a hybrid difference scheme on 

Shishkin type meshes and a boundary layer 

correction technique is used to solve the problem of 

the form (1.1) in Xie et. al. [10]. 
 

In this article, we study the effect of choice of 

monitor function in implementing the difference 

scheme on a nonuniform mesh known as adaptive 

grid [4, 6].  A comparative study is presented that 

how the choice of monitor function can affect in 

reducing the maximum pointwise error. 

Throughoutthis paper C denote a generic positive 

constant. 

II. ANALYTICAL PROPERTIES 

Lemma 2.1 The solution {y(x), λ}  of (1.1)  satisfies 

the following the inequalitie𝑠: 
 

|𝜆| ≤ 𝐶,   |𝑢𝑘(𝑥)|

≤ 𝐶 {1 + 𝜀−𝑘 𝑒𝑥𝑝 (−
𝛼𝑥

𝜀
)} , 𝑥𝜖𝛺 ̅,

𝑘 = 0,1 2, 3  
Proof. See the proof in [1,2].    

  

III. DISCRETIZATION AND MESH 

A. Discrete problem 

Consider difference approximations for BVP (1.1) 

on a non-uniform partition Ω𝑁 = {0 = 𝑥0 < 𝑥1 <
⋯𝑥𝑁−1 < 𝑥𝑁 = 1},  and denote ℎ𝑖  =  𝑥𝑖 −
𝑥𝑖−1;   𝑖 =  1, 2,⋯ ,𝑁., we Now, the Backward 

Euler scheme for(1.1) takes theform, 
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{
𝐿𝑁𝑌𝑗 ≡ 𝜀𝐷−𝑌𝑗 + 𝑓(𝑥𝑗 , 𝑌𝑗 , 𝜆

𝑛) = 0,   1 ≤ 𝑗 ≤ 𝑁 − 1,

𝑌0 = 𝑎,   𝑌𝑁 = 𝑏.                                                   (3.1)
 

 

Here,  𝐷−𝜙𝑗 =
𝜙𝑖−𝜙𝑖−1

ℎ𝑖
 for any mesh function 𝜙𝑖. 

B. Mesh generation 

To get uniformly convergent numerical 

approximation, one has to use layer adapted 

nonuniform mesh, which are fine inside the 

boundary layer region and coarse in the outerregion. 

Such a grid can be generated by using 

equidistribution of a positive monitor function. A 

grid Ω𝑁 satisfies following: 

 

∫ 𝑀(𝑦(𝑠), 𝑠)𝑑𝑠 =
𝑥𝑖

𝑥𝑖−1

∫ 𝑀(𝑦(𝑠), 𝑠)𝑑𝑠,    𝑖 = 1, … , 𝑁 − 1
𝑥𝑖+1

𝑥𝑖

,

(3.2) 

 

is said to be equidistribution, where𝑀(𝑦(𝑠), 𝑠) > 0 

is called a monitor function. Here, we study the 

following two kind of monitor function to construct 

a nonuniform mesh 

 

(i) 𝑀(𝑦(𝑥), 𝑥) = √1 + (𝑦′(𝑥))2, 

(ii) 𝑀(𝑦(𝑥), 𝑥) = 1 + |𝑦′′(𝑥)|
1

2. 

 

The following well discussed adaptive algorthim is 

used to construct the nonuniform mesh(refer 

[4,8,9]). 

 

IV. ADAPTIVE MESH GENERATION 

ALGORITHM 

Step 1: Take the initial mesh {𝑥𝑖
0 = {0,

1

𝑁
,
2

𝑁
, … , 1}  

as uniform mesh. 

Step 2: Compute the discrete solution 𝑦𝑖
𝑁,(𝑘)

 on 

mesh {𝑥𝑖
𝑘}, for = 0,1,2, …  . 

Step 3: Find the discretized monitor function 𝑀𝑖
(𝑘)

 

and compute 𝐿𝑗
(𝑘)
= ∑ ℎ𝑖

(𝑘)
𝑀𝑖
(𝑘)
.

𝑗
𝑖=1  

Step 4: Let 0C  be the user chosen constant, where 

10 C . If  
𝑚𝑎𝑥𝑖=1,…,𝑁ℎ𝑖

(𝑘)
𝑀𝑖
(𝑘)

 𝐿𝑁
(𝑘) ≤

𝐶0

𝑁
, then go to Step 6,    

           otherwise continue to Step 5. 

Step 5: Generate a new mesh by equidistributing 

the proposed monitor function . Set  

𝑌𝑖
𝑁,(𝑘)

 =
𝑖𝐿𝑁
(𝑘)

𝑁
, 𝑓𝑜𝑟 𝑖 = 0,1, … ,𝑁. Now  interpolate 

(𝑥𝑖
(𝑘+1), 𝑌(𝑥𝑖

𝑘))  to (𝑥𝑖
𝑘 , 𝑀𝑖

𝑘)  using piecewise 

linear interpolation. Generate a new mesh {𝑥𝑖
(𝑘) =

{0 = 𝑥0
(𝑘+1), 𝑥1

(𝑘+1), … , 𝑥𝑁
(𝑘+1) = 1} 

 
 and return to 

Step 2. 

Step 6: Set {𝑥𝑖
(𝑘) = {0 = 𝑥0

(𝑘), 𝑥1
(𝑘), … , 𝑥𝑁

(𝑘) = 1} 

and 𝑌 = 𝑌𝑘  . Stop. 

V. MAIN RESULT 

Theorem 4.1 Let {𝑦(𝑥), 𝜆} and {𝑌𝐽
𝑁 ,   𝜆𝑁} be the 

exact solution and discrete solution respectively. 

Then,  

𝑚𝑎𝑥⏟
𝑗

|𝑦(𝑥𝑗) − 𝑌𝑗
𝑁| < 𝐶𝑁−1,    |𝜆 − 𝜆𝑁| < 𝐶𝑁−1,        (4.1) 

where C is a constant  independent of 𝑁 and 𝜀 

 

VI. NUMERICAL EXAPERIMENT AND 

DISCUSSION 

The following test problem is taken for the 

numerical discussion. 

 

Example 5.1 Consider the following nonlinear 

singularly perturbed problem 

{
𝜀𝑦′(𝑥) + 2𝑦 − exp(−𝑦) + 𝑥2 + 𝜆 + tanh(𝜆 + 𝑥) = 0,    

𝑥𝜖Ω = (0,1),                                                                                 
𝑦(0) = 1,   𝑦(1) = 0.                                       (5.1)

 

 

The exact solution is not available for the 

parameterized BVP (5.1). Thus, to calculate the 

maximum pointwise error 𝐸𝜀,𝑢
𝑁  and the rate of 

convergence 𝑟𝜀,𝑢
𝑁 , we use the double mesh principle. 

Let us define 𝑌̅𝑖
2𝑁 as piecewise linear interpolation 

to 𝑌𝑖
𝑁 in ΩN. For any value of N, maximum 

pointwise error with respect to the variable u is 

defined as 𝐸𝜀,𝑢
𝑁 = 𝑚𝑎𝑥⏟

𝑗

|𝑌𝑗
𝑁 − 𝑌̅𝑗

2𝑁|. Similarly for 

the parameter 𝜆,  the maximum pointwise error is 

defined as 𝐸𝜀,𝜆
𝑁 = 𝑚𝑎𝑥⏟

𝑗

|𝜆𝑁 − 𝜆̅2𝑁|. The 

corresponding rate of convergenceare calculated by 
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𝑟𝜀,𝑢
𝑁 = 𝑙𝑜𝑔2 (

 𝐸𝜀,𝑢
𝑁

 𝐸𝜀,𝑢
2𝑁),    𝑟𝜀,𝜆

𝑁 = 𝑙𝑜𝑔2 (
 𝐸𝜀,𝜆
𝑁

 𝐸𝜀,𝜆
2𝑁). 

The results are presented in Table 1 and in Table 2 

which  are clear illustrations of the convergence 

estimate. Morover it can be observed  

that the maximum pointwise error is less while 

using 1 + 𝑦′′(𝑥)|
1

2 as monitor function instead of  

√1 + (𝑦′(𝑥))2. However the approximation 

converges with linear rate of convergence for both 

the monitor functions but the error is less than when 

the monitor function involves second order 

derivative.  

 

Table I: For  𝑀(𝑦(𝑥), 𝑥) = √1 + (𝑦′(𝑥))2. 

N 𝜀 = 1𝑒 − 4 𝜀 = 1𝑒 − 8 

16 0.013692 

0.67 

0.013705 

0.68 

32 0.0085672 

0.85 

0.0085717 

0.85 

64 0.004763 

0.91 

0.0047648 

0.91 

128 0.0025373 

0.93 

0.0025386 

0.92 

256 0.0013363 

0.95 

0.0013374 

0.95 

512 0.00069033 

0.97 

0.000691010.97 

1024 0.00035261 0.00035325 

Table II: For 𝑀(𝑦(𝑥), 𝑥) = 1 + |𝑦′′(𝑥)|
1

2. 

N 𝜀 = 1𝑒 − 4 𝜀 = 1𝑒 − 8 

16 0.0089624 

0.56 

0.0089615 

0.56 

32 0.0060763 

0.66 

0.0060757 

0.66 

64 0.0038574 

0.72 

0.0038571 

0.72 

128 0.0023363 

0.77 

0.0023361 

0.77 

256 0.0013663 

1.0079 

0.0013662 

1.0079 

512 0.0006794 

1.0137 

0.00067934 

1.0136 

1024 0.00033648 0.00033646 
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VII.  CONCLUDING REMARKS 

In this articel, effect of choice of monitor function is 

studied for the implementation of adaptive grid 

based backward Euler difference scheme for solving 

parameterized SPBVP. It has been observed that the 

choice of monitor function also improve the 

accuracy of the approximation. 
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