Thermoluminescence Spectroscopy: A Powerful Tool

Manisha Singh

Department of Applied Physics, Amity School of Pure and Applied Sciences, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior (MP)-474005, misingh@gwa.amity.edu

Abstract- Thermoluminescence spectroscopy is a very useful and powerful technique to study defects in materials, dating, personnel dosimetry, clinical dosimetry, environmental dosimetry and accidental dosimetry. In this review importance of thermoluminescence spectroscopy is revisited.

Keywords- Trap sites, glow curve.

I. INTRODUCTION

Thermoluminescence spectroscopy is a technique which employs thermoluminescence as a probe to measure radiations absorbed by a crystalline/ non-crystalline material [1-3]. T refers to an excitation spectroscopy in which emission of light from solid irradiated with radiations is produced by heating. The phenomenon is sensitive to the structural changes resulting due to impurity and presence of defects.

II. THEORETICAL BACKGROUND/ MECHANISM

For the production of thermo luminescence the host material should (i) possess ordered structure and must be wide band gap semiconductor (ii) and should possess defects/traps. The defects/traps of different types are created as (a) vacancy/imperfections produced at the time of crystal formation (b) distortions produced on addition of foreign ions of larger or smaller radii to host ions (c) consequence of radiative bombardment. The mechanism of thermoluminescence can be explained by considering the band structure of material exhibiting Luminescence. The impurities in solids introduce additional energy/discrete energy levels in between conduction and valence band of the host lattice. These energy levels are called localized energy levels thereby leading to local disturbances. When the thermo-luminescent materials are exposed to ionising radiations like α, β, γ, n, the system absorbs energy and changes from equilibrium to a metastable state. This change is through the transit of electrons from the valence band to the conduction band resulting in creation of free electron and hole. These free charge carriers move freely within the lattice and may get trapped at the defect sites thereby leading the storing of irradiation energy by crystal. This crystal when heated may release the stored charge followed by the relaxation of the system back to the equilibrium. The temperature at which the charge carriers are released from trap depends upon energy difference of trap depths and conduction/valence band. The released electron from the traps transits from conduction band following an intermediate transition to ground state resulting in recombination and thereby producing a luminescence (Fig 1). The defect where the electron is released is called trapping centre or trap and where the electron and hole recombine is called recombination centre or luminescent centre [4-6].

III. EXPERIMENTAL SET-UP

A reader system for Thermoluminescence Dosimeter consists of a planchet for keeping
and heating the dosimetric material, to
detect the thermoluminescence light
emission a Photo multiplier tube is used
PMT also convert emitted light into an
electrical signal. A basic schematic diagram
of a TLD reader is shown in Fig. 2.

![Fig. 2: A Schematic for TLD reader](image)

Defects in materials are either inherently
present or can be incorporated externally by
doping the sample with impurities.
Materials with defects when exposed to
radiations causes trapping of charge carriers
at defect sites. Subsequent heating of these
may release trapped charges, which in turn
recombines at luminescent centre which
leading to thermoluminescence.

By analysing the emission spectra the
properties of luminescent material and the
application to which it can be put is
revealed.

IV. THERMOLUMINESCENCE
EMISSION SPECTRA

The presence of defects and its position
with respect to conduction and valence
band strongly influences the luminescent
properties of materials. Thermoluminescence emission spectra also termed
as Glow curve can be employed for analysis
of defects, trap depth determinations,
radiation dose determination etc.

A. Glow curve

The glow curve is a plot of luminescence
intensity as a function of temperature, it is a
smooth and continuous spread out over a
wider temperature interval resulting in a
broader glow peak Fig-3a, total intensity,
the area under the glow peak depends on the
absorbed dose delivered before the readout.
Further the wide spread is composed of a
number of overlapping peaks, each peak
Corresponds to different trap depths and it
obtained from the release of electrons from
these traps of different depths. Fig 3(b).
Thermoluminescence graphs shows with
increase in temperature TL intensity
increase firstly reaches its maximum this
may be due to increase in probability of
evacuation of traps, which in turn increases
the probability of radiative recombination
of electrons and trapped holes, the decrease
in intensity with temperature may be due to
de-trapping finally decreases as the number
of charge carriers becomes depleted.
The different peaks in spectra corresponds to
different electron traps with different
depths. [6-7]

The shift in maxima of a
thermoluminescence (TL) glow curve with
increasing heating rate, the occurrence of
TL glow peak is observed at higher
temperature. The irradiation time
influences the TL intensity linearly and
could be related directly to production of
traps in TL materials, which increases
linearly with exposure duration as is
depicted by Fig.4. Further activation
energy/ depth height can be the obtained
from plot of log of intensity of TL Vs inverse
of kT Fig 5.
Fig. 3: Glow curve a) Thermoluminescence intensity as the function of temperature b) fitting different peaks to wide curve

Fig. 4: Effect of irradiation time on intensity of TL

Fig. 5: Plot to determine activation energy for maximum TL peak at different temperatures
V. CONCLUSION

A thermoluminescence curve, obtained by plotting the intensity of light emission against temperature, intensity against Radiation dose, intensity against exposure time is very sensitive and precise technique to measure defect locations in a crystal, radiotherapy, radiation protection.

REFERENCES