
1 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume V, Issue I, Dec 2022

Register Liveness Analysis to Enhance Thread

Occupancy

 Sandeep Gupta
1
, Kuldeep Narayan Tripathi

2*

1
Assistant Professor, Dept. of CSE, Amity University Madhya Pradesh Gwalior,

sgupta@gwa.amity.edu
2*

Assistant Professor, Dept. of CSE, Amity University Madhya Pradesh Gwalior,

kntripathi@gwa.amity.edu

Abstract—The hardware complexity can be

reduced when the register requirement is

statically calculated and exclusively dedicated to

executing the thread blocks in lifetime duration.

This considers the maximum number of live

registers at any given point in the thread block

execution. However, the time at which all the

requested registers are needed constitutes a tiny

fraction of the kernel program. This static

allocation, therefore, results in under-utilization

of the register file. This paper focuses on the

various general purposes of parallel computing

programs to determine the extent of the register

file's under-utilization due to the static

allocation by performing the liveness analysis.

Previous studies have already found that the

register file is the main thread occupancy

limiter in the GPUs, which gives an insight that

if the registers are used effectively by having

some dynamic allocation scheme, then the

thread occupancy could be increased manifold.

This paper has proposed a static pool allocation

count using a hybrid approach compared with

AlexNet kernel models. The implemented

hybrid model has generated a lesser count than

the AlexNet kernel model.

Keywords—GPGPU, register file, warp, resident

threads.

I. INTRODUCTION

Graphics Processing Units (GPUs) are

widely adopted across various domains

due to their massive thread-level

parallelism (TLP). The TLP present in the

GPUs is limited by the number of resident

threads, which depends on the available

resources in the GPUs such as registers,

shared memory, etc. [1]. Since the

allocation of threads to an SM is at the

thread block granularity, some resources

may not be used up entirely and hence

remain underutilized. When the resources

limit the applications, the number of

resident thread blocks gets limited. As a

result, the TLP in the SM also gets limited

[2].

 This work is a data-driven

approach. We analyze the register usage

for various benchmarks to see how static

register allocation at the thread block

scheduling results in wastage of

resources[3].

Hence, it becomes a bottleneck for the

throughput by restricting the number of

resident threads. We have performed our

register liveness analysis using nvdisasm

and nsight tools provided by CUDA

10.2.89 for the benchmarks [4]. As per our

observation, we think that instead of

having a static register allocation

mechanism at the scheduled time for a

thread block, it is better to have a hybrid

approach of allocating few registers at the

scheduled time (from static physical

register pool) and allocating more registers

later on demand (from the dynamic

physical register pool). For programs that

require a large number of registers for

execution, the hybrid register allocation

scheme will enable a higher number of

concurrent warps to be resident in the SM,

2 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

leading to higher thread occupancy in the

GPU at any instant of time [5].

In this work, we presented an analysis of

register liveness to enhance the thread

occupancy to address the issues mentioned

above. We proposed a synergistic

compiler-hardware mechanism to make

use of the hybrid register allocation

scheme. This paper makes the following

contributions:

 We analyzed the register liveness

and observed that a hybrid

approach to the registers'

allocation/de-allocation would be

better than the static and exclusive

policy used today.

 We propose a hybrid approach that

divides the register file into two

pools: A static register pool and a

dynamic register pool.

 We offer a synergistic compiler-

hardware mechanism to make use

of the hybrid register allocation

scheme.

The rest of the paper is organized as

follows: Section 2 expresses the

motivation for a hybrid GPU register file

approach. Section 3 describes some

background knowledge that was needed

for this paper analysis. Section 4 describes

our proposed theoretical solution,

elaborating on the tasks to be performed

on the compiler end and the tasks

performed on the hardware end (when SM

schedules the thread block). Section 5

presents the approach and methodology,

and Section 6 presents about Observation

and Analysis, Section 7 is the conclusion.

II. MOTIVATION

To improve the TLP and resource

utilization, we need to launch additional

thread blocks in each SM. The extra thread

blocks can help in improving the

throughput by hiding long execution

latency cycles. The register file is, by far,

the single biggest occupancy limiter for

threads (47%) observed in workloads [1].

The main culprit is the de facto GPU

resource allocation policy. GPU

architectures allot a CTA’s register

resources when the architecture schedules

the CTA. The allotment

conservatively pro- visions for registers

that statically might be needed but may not

be dynamically used. The architecture

frees the entire set of registers allotted to a

warp only when all that warp threads have

exited. By profiling applications for the

number of simultaneously live registers,

we can get an upper bound for how

wasteful the de facto GPU policy is [6].

This analysis would guide us to come up

with a better register allocation/de-

allocation scheme.

III. BACKGROUND RESEARCH

A. Register Liveness Analysis

The first step in register allocation is to

perform liveness analysis on the programs

Control Flow Graph. Liveness Analysis is

a data-flow analysis technique used by

compilers to calculate the live range of

every register. A live range is defined as a

write to a register followed by all the uses

of that register until the next write. A

variable is live at a certain point if it holds

a value that is needed in the future [5].

Optimum resource partition for competing

kernels on one SM. Elastic kernel [25][7]

enhances register and shared memory

occupancy through simultaneous kernels

released on a single SM. To improve

resource use, the SMK [8] offers a

dynamic sharing process for competing

kernels.

3 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

Kernel Merge [9] and Space

Multiplexing [10] studied how to use

competing kernels to improve GPU

resources and overall performance. To

expand the use of GPU, Lee et al.[11]also

exploit mixed competing kernels. In this

work, we aim for a single kernel to use

resources. For particular scenarios, some

works note the GPU sub-utilization

problem. To avoid warps at barriers for far

too long, SAWS [12] and BAWS [13] are

proposing barrier awareness scheduling

policies. CAWS [14] and CAWA [15]

predict and speed up lagging warts so that

the thread block (TB) can end more

quickly. Warp LEVEL [16]points out the

subtilization of space and time resources

due to the allocation of TB resources and

proposes the use of warp resources to

improve GPU resource utilization.

Although the efficient TLP can improve at

barriers and TB terminations, the

maximum number that is permitted to be

issued to the GPU is limited.

Zorua [17] uses GPU context

virtualization to provide portability to

programming and increase TLP levels.

Zorua differs from our approach with two

key differences. First, Zorua

assigns/distributes resources on the chip at

the phase limits. Whereas, when a

warp/TB suffers from a long latent

operation, our approach allocates

resources. Second, Zorua pours out the

register and shared storage overwritten

files into the global storage, while our

work uses the replacement on-chip

resources to change the context much

faster. Gebhart et al. [18] proposed to

unify L1 D-cache, common memory, and

record file to enhance GPU use of on-chip

resources. We also benefit from increasing

occupancy of registered or memory-

limited shared applications. However, the

unified design calls for extensive hardware

changes and software support. They must

also pay the overhead for distribution

because different kernels have various

resource requirements.

Some previous works [19][12][20][21]

use a GPU pre-emption context switching.

Like Lin et al. [19] proposes, we use

lightness analyses and compression

registrations to reduce the size of the

context. In this work, however, we use

spare resources for saving the spilled

contexts to allow context shifting much

faster.Dublish et al. [22]conduct a

bottleneck analysis of GPU memory

hierarchy at various levels, including the

L1/L2 and DRAM caches. Neither deals,

however, with the performance impact of

the L1-L2 interconnection. Majumdar et

al. [13] are looking at the scalability of the

computer and memory bandwidth GPU

kernels.

IV. MAIN IDEA

Based on the analysis of the register

liveness graphs for the various

benchmarks, we are proposing a hybrid

approach for the allocation of the physical

registers. The idea is to divide the physical

register file into two pools: Static and

Dynamic pool. At the time of scheduling a

thread block, SM would first allocate the

registers from the Static pool base‘ “1 d on

the information provided to it by the

compiler from the static register liveness

analysis and then at the execution time the

thread blocks would make the request for

more registers from the dynamic register

pool set. Early releasing the dead registers

can enable the CTA scheduler to launch

more thread blocks to the same SM even

before the on-going thread-block

completes its execution, resulting in an

increase of thread occupancy. The

approach can be used to develop models

which can be used for wireless sensor

networks [23], IoT [24] and many more.

A. Compile Time

At compile time, after performing the

liveness analysis, the compiler can add

indicator/instruction at the start of the

kernel SASS code, which will indicate

how many registers, should be allocated at

4 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

the time of scheduling the thread block

itself from the static pool. Compiler would

also add information by doing

instrumentation at the start of the basic

blocks which would need more than static

number of live registers for computation;

this would enable the SM to allocate

registers for the thread block from the

dynamic register pool at the start of a new

basic block. Compiler can also insert

indicators at the start of the basic blocks

for the early release of the registers which

are no longer going to be needed in the

kernel execution. The early register release

is based on the idea proposed in the paper

[1], where it defines a new term Register

Working Set to determine the point after

which quite a lot of registers are not

needed anymore in the kernel execution.

B. Execution Time

With the introduction of dynamic register

pool, the SM would be required to be more

intelligent as it needs to manage and keep

track of dynamic pool registers. SM needs

to maintain a register mapping table for

each warp from architected registers to

physical registers. Need to maintain a free

list of registers for the unmapped physical

registers. Therefore, the hardware

complexity is going to increase but it’s a

trade-off which would enhance the thread

occupancy by better utilization of the

registers[25].

V. APPROACH AND

METHODOLOGY

In order to collect the data regarding the

register liveness, we made use of the

nvdisasm and Nsight Compute tool to

generate Control-Flow-Graph[26] and

number of live registers vs. instructions

graph for the kernels[27]. We obtained

both the static register liveness values,

solely based on CFG, which ignores the

fact that how many times a particular basic

block is actually getting executed for a

kernel, but this would provide us with

some insight on how much percentage of

instructions have live register count below

a particular value. If the majority of the

instructions (for instance more than 50%)

could be satisfied with a certain live

register count, then at the time of

scheduling the thread block, SM would

allocate that many registers from the static

pool, leaving the thread block to demand

more registers during execution from the

dynamic register pool [28].

A. Tools Used [6]

1) Nvdisasm [4]: The NVIDIA

CUDA disassembler. It can extract

information from standalone Cubin files

and present them in human readable

format. nvdisasm also does control flow

analysis to annotatejump/branch targets.

Nvdisasm is capable of showing the

register liveness range information. For

each line of CUDA assembly, it displays

whether a given device register was

assigned, accessed, live or re- assigned.

It shows the total number of registers

used.

2) Nsight [6]: NvidiaNsight

Compute is a kernel profiler for CUDA

applications. After configuring which

kernels to profile, which metrics to

collect, etc., the application is run under

the profiler. The collected profile can be

stored in a file with nsight-cuprof-report

extension. Using Nsight, we can launch

or attach to a target application to obtain

the desired metrics.

.Fig. 1. Vector Add Kernel Register Liveness

5 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

Analysis Control-Flow-Graph:vectorAdd

Kernel Benchmark

In the proposed work we performed the

analysis on AlexNet benchmark of the

Tango Benchmark Suite.

B. Register Liveness Analysis

Data Generation/Analysis Flow:

 Generation of Control-Flow-

Graph for the SASS code

(nvdisasm tool and Graphviz)

 Performing register Liveness

Analysis on the generated CFG

(Nsight tool)

 Plotting the graph between the

actual required registers versus

statically allocated registers over

the span of the kernel

(percentage of static allocated

registers vs. required live

registers for each instruction)

VI. OBSERVATION AND

ANALYSIS

Analysis is done on the basis of the

observations obtained from the

following three graphs:

A. Live Register Count vs. percentage

of Static

 Instructions.

B. Live Register Count vs. percentage

of Warp

 Execution.

C. Live Register Count vs. percentage

of Dynamic instructions.

Graph A provides an insight into how

many instructions of the src assembly

code can be executed for a given number

of registers. Graph B demonstrates the

register count for the registers allocated

and used by the warp during execution.

Graph C provides an insight into how

many instructions really executed for a

given number of registers[29].

Fig. 2. Control Flow Graph

(Vector Add Kernel)

A. Kernel 1: executePoolingCuda

(Fig. 3)

In this kernel, there is a scope for early

release of the registers since for the last

5.5% of the warp execution, maximum 5

registers are required. The max register

requirement computed at the time of

compilation is 25. Static analysis shows

that 75% of the instructions need 15

registers to be live at any instant; hence

our hybrid approach allocates 15

registers from the static pool. Any extra

register requirements would be allocated

from the dynamic pool at the execution

time. However, the dynamic analysis

performed by executing the kernel

shows that all the instructions got

executed with the 10 registers allocated

from the static pool, so no further

request was needed to the dynamic

register pool. Another aspect to observe

6 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

is that early release technique[1] would

require 25 registers for 94.55% of the

warp execution and 5 registers for 5.45%

at the tail end, which on average requires

24 registers across the complete warp

execution. Our hybrid approach, whereas

allocates 15 registers for the complete

warp execution, if combined with early

release approach, then on average it

would need 14.55 registers(i.e. 15

registers). Compared to the default GPU

allocation scheme, hybrid approach is

using 37.5% (15 instead of 25) less

registers for this particular kernel[30].

Fig. 3. ExecutePoolingCuda

B. Kernel 2: Executing 3D

Convolution Group2Cuda (Fig.4)

and execute 3D Convolution (Fig.

5)

In execute3DConvolutionGroup2Cuda

kernel, there is no scope for early release

of the registers since it releases the

registers only for 0.03% of the warp

execution at the tail end. The max register

requirement computed at the time of

compilation is 46. Static analysis shows

that 75% of the instructions need 22

registers to be live at any instant; hence

our hybrid approach allocates 23 registers

from the static pool. Any extra register

requirement would be allocated from the

dynamic pool at the execution time.

However, the dynamic analysis performed

by executing the kernel shows that all the

instructions got executed with the 21

registers allocated from the static pool, so

no further request was needed to the

dynamic register pool.

execute3DConvolution shows similar

behaviour.

7 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

Fig. 4. Execute 3D Convolution Group2

Cuda

Fig. 5. Execute 3D Convolution Cuda

Fig. 6. executeFCLayer

8 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

Fig. 7. firstLayer

Fig. 8. Comparison of Register Allocation

Schemes for various AlexNet Kernels

C. Kernel 3: execute FC Layer (Fig. 6)

In execute FC Layer kernel, there is no

scope for early release of the registers

since it releases the registers only for

0.05% of the warp execution at the tail

end. The max register requirement

computed at the time of compilation is

42. Static analysis shows that 75% of the

instructions need 23 registers to be live

at any instant; hence our hybrid

approach allocates 23 registers from the

static pool. Any extra register

requirements would be allocated from

the dynamic pool at the execution time.

However, the dynamic analysis

performed by executing the kernel

shows that the instructions need all 42

registers at some point of warp

execution, resulting in the request to be

made to dynamic pool for the remaining

19 registers in steps based on the Basic

Block requirements. This could result in

some overhead.

D. Kernel 4: first Layer (Fig. 7)

In firstLayer kernel, there is no scope for

early release of the registers since it

releases the registers only for 1% of the

warp execution at the tail end. The max

register requirement computed at the

time of compilation is 57. Static analysis

shows that 75% of the instructions need

53 registers to be live at any instant;

hence our hybrid approach allocates 53

registers from the static pool. Very less

requirement needs to be fulfilled from

the dynamic pool at the execution time.

However, the dynamic analysis per-

formed by executing the kernel shows

that only 70% of the instructions execute

with 53 registers. So here hybrid

approach does not perform well. Number

of the registers allocated from the static

pool is given by the maximum(A,B)

where A is half of the Maximum register

requirement based on the compile time

and B is the number of register required

for 75% of instructions to get executed.

VII. CONCLUSION

There is a high need to move from the

static and exclusive allocation of the

physical registers in order to increase the

thread occupancy to increase the GPU

throughput. From the analysis of the five

kernels of the AlexNet benchmark, we

observed that our hybrid approach could

9 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

be a better alternative to the default

static register allocation scheme. To gain

better insight on the percentage of

utilisation gain obtained from hybrid

approach in general, we need to perform

our analysis on various benchmark

suites. In future, we can implement our

approach on GPGPU- Sim to analyze the

complete solution and related issues as

well. Deadlock is one of the issues our

approach needs to figure out as two

warps requesting the registers from the

dynamic pool should not end up in

deadlock. One needs to keep in mind

that the mechanism should not add a

huge hardware overhead in terms of

space and complexity or else the solution

would not be too much feasible to see

the light.

REFERENCES

[1] D. Voitsechov, A. Zulfiqar, M. Stephenson,

M. Gebhart, and S. W. Keckler, “Software-

directed techniques for improved GPU

register file utilization,” ACM Trans. Archit.

Code Optim., 2018.

[2] P. Sakdhnagool, A. Sabne, and R.

Eigenmann, “RegDem: Increasing GPU

performance via shared memory register

spilling,” arXiv. 2019.

[3] Y. P. You and S. C. Chen, “VecRA: A vector-

aware register allocator for GPU shader

processors,” in ACM Transactions on

Embedded Computing Systems, 2016.

[4] S. Cook, CUDA Programming: A

Developer’s Guide to Parallel Computing

with GPUs. 2013.

[5] H. Asghari Esfeden, F. Khorasani, H. Jeon, D.

Wong, and N. Abu-Ghazaleh, “CORF:

Coalescing Operand Register File for GPUs,”

in International Conference on Architectural

Support for Programming Languages and

Operating Systems - ASPLOS, 2019.

[6] K. Iyer and J. Kiel, “GPU debugging and

profiling with NVIDIA parallel nsight,” in

Game Development Tools, 2016.

[7] S. Pai, M. J. Thazhuthaveetil, and R.

Govindarajan, “Improving GPGPU

concurrency with elastic kernels,” ACM

SIGARCH Comput. Archit. News, 2013.

[8] Z. Wang, J. Yang, R. Melhem, B. Childers, Y.

Zhang, and M. Guo, “Simultaneous

Multikernel GPU: Multi-tasking throughput

processors via fine-grained sharing,” in

Proceedings - International Symposium on

High-Performance Computer Architecture,

2016.

[9] C. Gregg, J. Dorn, K. Hazelwood, and K.

Skadron, “Fine-grained resource sharing for

concurrent GPGPU kernels,” in 4th USENIX

Workshop on Hot Topics in Parallelism,

HotPar 2012, 2012.

[10] J. T. Adriaens, K. Compton, N. S. Kim, and

M. J. Schulte, “The case for GPGPU spatial

multitasking,” in Proceedings - International

Symposium on High-Performance Computer

Architecture, 2012.

[11] M. Lee et al., “Improving GPGPU resource

utilization through alternative thread block

scheduling,” in Proceedings - International

Symposium on High-Performance Computer

Architecture, 2014.

[12] J. Liu, J. Yang, and R. Melhem, “SAWS:

Synchronization aware GPGPU warp

scheduling for multiple independent warp

schedulers,” in Proceedings of the Annual

International Symposium on

Microarchitecture, MICRO, 2015.

[13] Y. Liu et al., “Barrier-aware warp scheduling

for throughput processors,” in Proceedings of

the International Conference on

Supercomputing, 2016.

[14] S. Y. Lee and C. J. Wu, “CAWS: Criticality-

aware warp scheduling for GPGPU

workloads,” in Parallel Architectures and

Compilation Techniques - Conference

Proceedings, PACT, 2014.

[15] S. Y. Lee, A. Arunkumar, and C. J. Wu,

“CAWA: Coordinated warp scheduling and

cache prioritization for critical warp

acceleration of GPGPU workloads,” in

Proceedings - International Symposium on

Computer Architecture, 2015.

[16] P. Xiang, Y. Yang, and H. Zhou, “Warp-level

divergence in GPUs: Characterization,

impact, and mitigation,” in Proceedings -

International Symposium on High-

Performance Computer Architecture, 2014.

[17] N. Vijaykumar et al., “Zorua: A holistic

approach to resource virtualization in GPUs,”

in Proceedings of the Annual International

Symposium on Microarchitecture, MICRO,

2016.

[18] M. Gebhart, S. W. Keckler, B. Khailany, R.

Krashinsky, and W. J. Dally, “Unifying

primary cache, scratch, and register file

memories in a throughput processor,” in

Proceedings - 2012 IEEE/ACM 45th

10 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

International Symposium on

Microarchitecture, MICRO 2012, 2012.

[19] Z. Lin, L. Nyland, and H. Zhou, “Enabling

Efficient Preemption for SIMT Architectures

with Lightweight Context Switching,” in

International Conference for High

Performance Computing, Networking,

Storage and Analysis, SC, 2016.

[20] A. Anand, A. Raj, R. Kohli, and V. Bibhu,

“Proposed symmetric key cryptography

algorithm for data security,” in 2016 1st

International Conference on Innovation and

Challenges in Cyber Security, ICICCS 2016,

2016.

[21] S. Chowdhury and P. Mayilvahanan, “A

survey on internet of things: Privacy with

security of sensors and wearable network

ip/protocols,” Int. J. Eng. Technol., 2018.

[22] S. Dublish, V. Nagarajan, and N. Topham,

“Characterizing memory bottlenecks in

GPGPU workloads,” in Proceedings of the

2016 IEEE International Symposium on

Workload Characterization, IISWC 2016,

2016.

[23] S. Verma, S. Kaur, G. Dhiman, and A. Kaur,

“Design of a novel energy efficient routing

framework for Wireless Nanosensor

Networks,” in ICSCCC 2018 - 1st

International Conference on Secure Cyber

Computing and Communications, 2018.

[24] G. Dhiman, “ESA: a hybrid bio-inspired

metaheuristic optimization approach for

engineering problems,” Eng. Comput., 2019.

[25] N. Kumar, N. Kharkwal, R. Kohli, and S.

Choudhary, “Ethical aspects and future of

artificial intelligence,” in 2016 1st

International Conference on Innovation and

Challenges in Cyber Security, ICICCS 2016,

2016.

[26] P. Singh, G. Dhiman, and A. Kaur, “A

quantum approach for time series data based

on graph and Schrödinger equations

methods,” Mod. Phys. Lett. A, 2018.

[27] K. B. Prakash, S. Nazeer, P. K. Vadla, and S.

Chowdhury, “Layered programming model

for resource provisioning in fog computing

using yet another fog simulator,” Int. J.

Emerg. Trends Eng. Res., 2020.

[28] R. Nair, S. Gupta, M. Soni, P. Kumar Shukla,

and G. Dhiman, “An approach to minimize

the energy consumption during blockchain

transaction,” Mater. Today Proc., 2020.

[29] G. Dhiman and V. Kumar, “Multi-objective

spotted hyena optimizer: A Multi-objective

optimization algorithm for engineering

problems,” Knowledge-Based Syst., 2018.

[30] G. Dhiman, “MOSHEPO: a hybrid multi-

objective approach to solve economic load

dispatch and micro grid problems,” Appl.

Intell., 2020.

11 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

12 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume V, Issue I, Dec 2022

13 Engineering and Technology Journal for Research and Innovation (ETJRI)

 ISSN 2581-8678, Volume IV, Issue II, Jun 2022

