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Abstract—The hardware complexity can be 

reduced when the register requirement is 

statically calculated and exclusively dedicated to 

executing the thread blocks in lifetime duration. 

This considers the maximum number of live 

registers at any given point in the thread block 

execution. However, the time at which all the 

requested registers are needed constitutes a tiny 

fraction of the kernel program. This static 

allocation, therefore, results in under-utilization 

of the register file. This paper focuses on the 

various general purposes of parallel computing 

programs to determine the extent of the register 

file's under-utilization due to the static 

allocation by performing the liveness analysis. 

Previous studies have already found that the 

register file is the main thread occupancy 

limiter in the GPUs, which gives an insight that 

if the registers are used effectively by having 

some dynamic allocation scheme, then the 

thread occupancy could be increased manifold. 

This paper has proposed a static pool allocation 

count using a hybrid approach compared with 

AlexNet kernel models. The implemented 

hybrid model has generated a lesser count than 

the AlexNet kernel model. 

 

Keywords—GPGPU, register file, warp, resident 

threads. 

 

I. INTRODUCTION 

Graphics Processing Units (GPUs) are 

widely adopted across various domains 

due to their massive thread-level 

parallelism (TLP). The TLP present in the 

GPUs is limited by the number of resident 

threads, which depends on the available 

resources in the GPUs such as registers, 

shared memory, etc. [1]. Since the 

allocation of threads to an SM is at the 

thread block granularity, some resources 

may not be used up entirely and hence 

remain underutilized. When the resources 

limit the applications, the number of 

resident thread blocks gets limited. As a 

result, the TLP in the SM also gets limited 

[2]. 

           This work is a data-driven 

approach. We analyze the register usage 

for various benchmarks to see how static 

register allocation at the thread block 

scheduling results in wastage of 

resources[3].  

Hence, it becomes a bottleneck for the 

throughput by restricting the number of 

resident threads. We have performed our 

register liveness analysis using nvdisasm 

and nsight tools provided by CUDA 

10.2.89 for the benchmarks [4]. As per our 

observation, we think that instead of 

having a static register allocation 

mechanism at the scheduled time for a 

thread block, it is better to have a hybrid 

approach of allocating few registers at the 

scheduled time (from static physical 

register pool) and allocating more registers 

later on demand (from the dynamic 

physical register pool). For programs that 

require a large number of registers for 

execution, the hybrid register allocation 

scheme will enable a higher number of 

concurrent warps to be resident in the SM, 
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leading to higher thread occupancy in the 

GPU at any instant of time [5]. 

In this work, we presented an analysis of 

register liveness to enhance the thread 

occupancy to address the issues mentioned 

above. We proposed a synergistic 

compiler-hardware mechanism to make 

use of the hybrid register allocation 

scheme. This paper makes the following 

contributions:  

 

 We analyzed the register liveness 

and observed that a hybrid 

approach to the registers' 

allocation/de-allocation would be 

better than the static and exclusive 

policy used today. 

 We propose a hybrid approach that 

divides the register file into two 

pools: A static register pool and a 

dynamic register pool. 

 We offer a synergistic compiler-

hardware mechanism to make use 

of the hybrid register allocation 

scheme. 

The rest of the paper is organized as 

follows: Section 2 expresses the 

motivation for a hybrid GPU register file 

approach. Section 3 describes some 

background knowledge that was needed 

for this paper analysis. Section 4 describes 

our proposed theoretical solution, 

elaborating on the tasks to be performed 

on the compiler end and the tasks 

performed on the hardware end (when SM 

schedules the thread block). Section 5 

presents the approach and methodology, 

and Section 6 presents about Observation 

and Analysis, Section 7 is the conclusion. 

II. MOTIVATION 

To improve the TLP and resource 

utilization, we need to launch additional 

thread blocks in each SM. The extra thread 

blocks can help in improving the 

throughput by hiding long execution 

latency cycles. The register file is, by far, 

the single biggest occupancy limiter for 

threads (47%) observed in workloads [1]. 

The main culprit is the de facto GPU 

resource allocation policy. GPU 

architectures allot a CTA’s register 

resources when the architecture schedules 

the CTA. The allotment  

conservatively pro- visions for registers 

that statically might be needed but may not 

be dynamically used. The architecture 

frees the entire set of registers allotted to a 

warp only when all that warp threads have 

exited. By profiling applications for the 

number of simultaneously live registers, 

we can get an upper bound for how 

wasteful the de facto GPU policy is [6]. 

This analysis would guide us to come up 

with a better register allocation/de-

allocation scheme.  

III. BACKGROUND RESEARCH 

A. Register Liveness Analysis 

The first step in register allocation is to 

perform liveness analysis on the programs 

Control Flow Graph. Liveness Analysis is 

a data-flow analysis technique used by 

compilers to calculate the live range of 

every register. A live range is defined as a 

write to a register followed by all the uses 

of that register until the next write. A 

variable is live at a certain point if it holds 

a value that is needed in the future [5]. 

Optimum resource partition for competing 

kernels on one SM. Elastic kernel [25][7] 

enhances register and shared memory 

occupancy through simultaneous kernels 

released on a single SM. To improve 

resource use, the SMK [8] offers a 

dynamic sharing process for competing 

kernels. 
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Kernel Merge [9] and Space 

Multiplexing [10] studied how to use 

competing kernels to improve GPU 

resources and overall performance. To 

expand the use of GPU, Lee et al.[11]also 

exploit mixed competing kernels. In this 

work, we aim for a single kernel to use 

resources. For particular scenarios, some 

works note the GPU sub-utilization 

problem. To avoid warps at barriers for far 

too long, SAWS [12] and BAWS [13] are 

proposing barrier awareness scheduling 

policies. CAWS [14] and CAWA [15] 

predict and speed up lagging warts so that 

the thread block (TB) can end more 

quickly. Warp LEVEL [16]points out the 

subtilization of space and time resources 

due to the allocation of TB resources and 

proposes the use of warp resources to 

improve GPU resource utilization. 

Although the efficient TLP can improve at 

barriers and TB terminations, the 

maximum number that is permitted to be 

issued to the GPU is limited. 

Zorua [17] uses GPU context 

virtualization to provide portability to 

programming and increase TLP levels. 

Zorua differs from our approach with two 

key differences. First, Zorua 

assigns/distributes resources on the chip at 

the phase limits. Whereas, when a 

warp/TB suffers from a long latent 

operation, our approach allocates 

resources. Second, Zorua pours out the 

register and shared storage overwritten 

files into the global storage, while our 

work uses the replacement on-chip 

resources to change the context much 

faster. Gebhart et al. [18] proposed to 

unify L1 D-cache, common memory, and 

record file to enhance GPU use of on-chip 

resources. We also benefit from increasing 

occupancy of registered or memory-

limited shared applications. However, the 

unified design calls for extensive hardware 

changes and software support. They must 

also pay the overhead for distribution 

because different kernels have various 

resource requirements. 

Some previous works [19][12][20][21] 

use a GPU pre-emption context switching. 

Like Lin et al. [19] proposes, we use 

lightness analyses and compression 

registrations to reduce the size of the 

context. In this work, however, we use 

spare resources for saving the spilled 

contexts to allow context shifting much 

faster.Dublish et al. [22]conduct a 

bottleneck analysis of GPU memory 

hierarchy at various levels, including the 

L1/L2 and DRAM caches. Neither deals, 

however, with the performance impact of 

the L1-L2 interconnection. Majumdar et 

al. [13] are looking at the scalability of the 

computer and memory bandwidth GPU 

kernels.  

IV. MAIN IDEA 

Based on the analysis of the register 

liveness graphs for the various 

benchmarks, we are proposing a hybrid 

approach for the allocation of the physical 

registers. The idea is to divide the physical 

register file into two pools: Static and 

Dynamic pool. At the time of scheduling a 

thread block, SM would first allocate the 

registers from the Static pool base‘ “1 d on 

the information provided to it by the 

compiler from the static register liveness 

analysis and then at the execution time the 

thread blocks would make the request for 

more registers from the dynamic register 

pool set. Early releasing the dead registers 

can enable the CTA scheduler to launch 

more thread blocks to the same SM even 

before the on-going thread-block 

completes its execution, resulting in an 

increase of thread occupancy. The 

approach can be used to develop models 

which can be used for wireless sensor 

networks [23], IoT [24] and many more. 

A. Compile Time 

At compile time, after performing the 

liveness analysis, the compiler can add 

indicator/instruction at the start of the 

kernel SASS code, which will indicate 

how many registers, should be allocated at 
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the time of scheduling the thread block 

itself from the static pool. Compiler would 

also add information by doing 

instrumentation at the start of the basic 

blocks which would need more than static 

number of live registers for computation; 

this would enable the SM to allocate 

registers for the thread block from the 

dynamic register pool at the start of a new 

basic block. Compiler can also insert 

indicators at the start of the basic blocks 

for the early release of the registers which 

are no longer going to be needed in the 

kernel execution. The early register release 

is based on the idea proposed in the paper 

[1], where it defines a new term Register 

Working Set to determine the point after 

which quite a lot of registers are not 

needed anymore in the kernel execution. 

B. Execution Time 

With the introduction of dynamic register 

pool, the SM would be required to be more 

intelligent as it needs to manage and keep 

track of dynamic pool registers. SM needs 

to maintain a register mapping table for 

each warp from architected registers to 

physical registers. Need to maintain a free 

list of registers for the unmapped physical 

registers. Therefore, the hardware 

complexity is going to increase but it’s a 

trade-off which would enhance the thread 

occupancy by better utilization of the 

registers[25]. 

V. APPROACH AND 

METHODOLOGY 

In order to collect the data regarding the 

register liveness, we made use of the 

nvdisasm and Nsight Compute tool to 

generate Control-Flow-Graph[26] and 

number of live registers vs. instructions 

graph for the kernels[27]. We obtained 

both the static register liveness values, 

solely based on CFG, which ignores the 

fact that how many times a particular basic 

block is actually getting executed for a 

kernel, but this would provide us with 

some insight on how much percentage of 

instructions have live register count below 

a particular value. If the majority of the 

instructions (for instance more than 50%) 

could be satisfied with a certain live 

register count, then at   the time of 

scheduling the thread block, SM would 

allocate that many registers from the static 

pool, leaving the thread block to demand 

more registers during execution from the 

dynamic register pool [28]. 

A. Tools Used [6] 

1)  Nvdisasm [4]: The NVIDIA 

CUDA disassembler. It can extract 

information from standalone Cubin files 

and present them in human readable 

format. nvdisasm also does control flow 

analysis to annotatejump/branch targets. 

Nvdisasm is capable of showing the 

register liveness range information. For 

each line of CUDA assembly, it displays 

whether a given device register was 

assigned, accessed, live or re- assigned. 

It shows the total number of registers 

used. 

2)  Nsight [6]: NvidiaNsight 

Compute is a kernel profiler for CUDA 

applications. After configuring which 

kernels to profile, which metrics to 

collect, etc., the application is run under 

the profiler. The collected profile can be 

stored in a file with nsight-cuprof-report 

extension. Using Nsight, we can launch 

or attach to a target application to obtain 

the desired metrics. 

 

.Fig. 1. Vector Add Kernel Register Liveness 
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Analysis Control-Flow-Graph:vectorAdd 

Kernel Benchmark 

 

In the proposed work we performed the 

analysis on AlexNet benchmark of the 

Tango Benchmark Suite. 

B. Register Liveness Analysis 

Data Generation/Analysis Flow: 

 Generation of Control-Flow-

Graph for the SASS code 

(nvdisasm tool and Graphviz) 

 Performing register Liveness 

Analysis on the generated CFG 

(Nsight tool) 

 Plotting the graph between the 

actual required registers versus 

statically allocated registers over 

the span of the kernel 

(percentage of static allocated 

registers vs. required live 

registers for each instruction) 
 

VI. OBSERVATION AND 

ANALYSIS 

Analysis is done on the basis of the 

observations obtained from the 

following three graphs:  

A. Live Register Count vs. percentage 

of Static  

       Instructions.  

B. Live Register Count vs. percentage 

of Warp 

       Execution. 

C. Live Register Count vs. percentage 

of Dynamic instructions.  

 

Graph A provides an insight into how 

many instructions of the src assembly 

code can be executed for a given number 

of registers. Graph B demonstrates the 

register count for the registers allocated 

and used by the warp during execution. 

Graph C provides an insight into how 

many instructions really executed for a 

given number of registers[29]. 

 

 

 

 

Fig. 2. Control Flow Graph  

(Vector Add Kernel) 

 

A. Kernel 1: executePoolingCuda 

(Fig. 3) 

In this kernel, there is a scope for early 

release of the registers since for the last 

5.5% of the warp execution, maximum 5 

registers are required. The max register 

requirement computed at the time of 

compilation is 25. Static analysis shows 

that 75% of the instructions need 15 

registers to be live at   any instant; hence 

our hybrid approach allocates 15 

registers from the static pool. Any extra 

register requirements would be allocated 

from the dynamic pool at the execution 

time. However, the dynamic analysis 

performed by executing the kernel 

shows that all the instructions got 

executed with the 10 registers allocated 

from the static pool, so no further 

request was needed to the dynamic 

register pool. Another aspect to observe 
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is that early release technique[1] would 

require 25 registers for 94.55% of the 

warp execution and 5 registers for 5.45% 

at the tail end, which on average requires 

24 registers across the complete warp 

execution. Our hybrid approach, whereas 

allocates 15 registers for the complete 

warp execution, if combined with early 

release approach, then on average it 

would need 14.55 registers(i.e. 15 

registers). Compared to the default GPU 

allocation scheme, hybrid approach is 

using 37.5% (15 instead of 25) less 

registers for this particular kernel[30]. 

 

 

 

 

 

 

Fig.  3.   ExecutePoolingCuda 

 

B. Kernel 2: Executing 3D 

Convolution Group2Cuda (Fig.4) 

and execute 3D Convolution (Fig. 

5) 

In execute3DConvolutionGroup2Cuda 

kernel, there is no scope for early release 

of the registers since it releases the 

registers only for 0.03% of the warp 

execution at the tail end. The max register 

requirement computed at the time of 

compilation is 46. Static analysis shows 

that 75% of the instructions need 22 

registers to be live at any instant; hence 

our hybrid approach allocates 23 registers 

from the static pool. Any extra register 

requirement would be allocated from the 

dynamic pool at the execution time. 

However, the dynamic analysis performed 

by executing the kernel shows that all the 

instructions got executed with the 21 

registers allocated from the static pool, so 

no further request was needed to the 

dynamic register pool. 

execute3DConvolution shows similar 

behaviour. 
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Fig.  4.  Execute 3D Convolution Group2 

Cuda 

 

 

Fig.  5.   Execute 3D Convolution Cuda  

 

 

 

Fig.  6.   executeFCLayer 
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Fig.  7.   firstLayer 

 

Fig. 8. Comparison of Register Allocation 

Schemes for various AlexNet Kernels                                

 

C. Kernel 3: execute FC Layer (Fig. 6) 

In execute FC Layer kernel, there is no 

scope for early release of the registers 

since it releases the registers only for 

0.05% of the warp execution at the tail 

end. The max register requirement 

computed at the time of compilation is 

42. Static analysis shows that 75% of the 

instructions need 23 registers to be live 

at any instant; hence our hybrid 

approach allocates 23 registers from the 

static pool. Any extra register 

requirements would be allocated from 

the dynamic pool at the execution time. 

However, the dynamic analysis 

performed by executing the kernel 

shows that the instructions need all 42 

registers at some point of warp 

execution, resulting in the request to be 

made to dynamic pool for the remaining 

19 registers in steps based on the Basic 

Block requirements. This could result in 

some overhead. 

 

D. Kernel 4: first Layer (Fig. 7) 

In firstLayer kernel, there is no scope for 

early release of the registers since it 

releases the registers only for 1% of the 

warp execution at the tail end. The max 

register requirement computed at the 

time of compilation is 57. Static analysis 

shows that 75% of the instructions need 

53 registers to be live at any instant; 

hence our hybrid approach allocates 53 

registers from the static pool. Very less 

requirement needs to be fulfilled from 

the dynamic pool at the execution time. 

However, the dynamic analysis per- 

formed by executing the kernel shows 

that only 70% of the instructions execute 

with 53 registers. So here hybrid 

approach does not perform well. Number 

of the registers allocated from the static 

pool is given by the maximum(A,B) 

where A is half of the Maximum register 

requirement based on the compile time 

and B is the number of register required 

for 75% of instructions to get executed. 

VII. CONCLUSION 

There is a high need to move from the 

static and exclusive allocation of the 

physical registers in order to increase the 

thread occupancy to increase the GPU 

throughput. From the analysis of the five 

kernels of the AlexNet benchmark, we 

observed that our hybrid approach could 
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be a better alternative to the default 

static register allocation scheme. To gain 

better insight on the percentage of 

utilisation gain obtained from hybrid 

approach in general, we need to perform 

our analysis on various benchmark 

suites. In future, we can implement our 

approach on GPGPU- Sim to analyze the 

complete solution and related issues as 

well. Deadlock is one of the issues our 

approach needs to figure out as two 

warps requesting the registers from the 

dynamic pool should not end up in 

deadlock. One needs to keep in mind 

that the mechanism should not add a 

huge hardware overhead in terms of 

space and complexity or else the solution 

would not be too much feasible to see 

the light. 
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