B-Tech (CSE) 4 years

Amity University Punjab, Mohali Amity School of Engineering and Technology

Semester-Wise Programme structure for B. Tech (CSE) (Batch-2023) [4 year]

Sr. No.	Year 1		Year 2		Year	: 3	Year 4		
	Semester 1 Semester 2		Semester 3 Semester 4		Semester 5	Semester 6	Semester 7	Semester 8	
1	Engineering Physics (PHY118)[CU : 5, L-4, P-1] {BSC}	Basic Electrical Engineering (PHY110) [CU: 5, L-4, P-1] {ESC}	Data Structures and Algorithms [CU:5, L-3, P-2] {CC}	Discrete Mathematics [CU: 4, L-4] {BSC}	Database Management System [CU:5, L-3, P-2] {CC}	Compiler Design [CU:4, L-3, P-1] {CC}	Specializatio n Elective-III [CU:4, L-3, P-1] {SE}	Specializatio n Elective-V [CU:4, L-3, P-1] {SE}	
2	Mathematics-I (MAT101)[CU : 4, L-4] {BSC}	Mathematics-II (MAT111) [CU: 4, L-4] {BSC}	Computer Organization and Architecture [CU:3, L-3] {CC}	CU:3, L-3]		Formal Language and Automata Theory [CU:3, L-3] {CC} Agile Software Development [CU:4, L-3, P-1] {CC}		Open Elective-III [CU:3, L-3] {OE}	
3	Programmimg for Problem Solving-I (CSE107) [CU:5, L-3, P- 2] {ESC}	Object Oriented Programming Using C++ (CSE-104) [CU:5, L-3, P- 2] {ESC}	Python Programming[CU: 4, L-3, P-1] {ESC}	Java Programming[CU: 5, L-3, P-2] {ESC}	Foundations of Artificial Intelligence [CU:4, L-3, P-1] {CC}	Design Thinking [CU:3, L-3] {CC}	Open Elective-II [CU:3, L-3] {OE}	Domain Elective-V [CU:3, L-3] {DE}	

4	Engineering Design and Graphics [CU:3, DS-2, P-1] {ESC}	General Chemistry (CHE112) [CU:4, L-3, P-1] {BSC}	Computer Networks [CU:4, L-3, P-1] {CC}	Software Engineering [CU:4, L-3, P-1] {CC}	Specialization Elective-I [CU:4, L-3, P-1] {SE}	Specializatio n Elective-II [CU:4, L-3, P-1] {SE}	Domain Elective-III [CU:3, L-3] {DE}	Industrial Training [CU:14] {NTCC}
5	Understanding Self for Effectiveness (PSY101) [CU:1, L-1] {VAC}	Manufacturing Practices-I (CSE108) [CU:3, L-3] {ESC}	Probability and Statistics [CU: 4, L-4] {BSC}	Fundamentals of IOT and Blockchain [CU: 4, L-, P-1] {CC}	Introduction to Entrepreneurshi p [CU:3, L-3] {HUM}	Open Elective-I [CU:3, L-3] {OE}	Domain Elective-IV [CU:3, L-3] {DE}	
6	Communicatio n Skills -I (ENG101) [CU:1, L-1] {VAC}	Communicatio n Skills -II (ENG103) [CU:1, L-1] {VAC}	Operating Systems [CU:4, L-3, P-1] {CC}	Design and Analysis of Algorithms [CU:4, L-3, P-1] {CC}	Domain Elective-I [CU:3, L-3] {DE}	Domain Elective-II [CU:3, L-3] {DE}	Major Project [CU:4] {NTCC}	
7	Introduction to French Culture & Language (FOL101)/ Introduction to German Culture & Language (FOL102) [CU:1, L-1] {VAC}	Individual, Society and Nation (PSY106) [CU:1, L-1] {VAC}	IT Workshop [CU:1 , P-1] {SEC}		Industrial Training [CU:2] {NTCC}	Minor Project [CU:3] {NTCC}	Industrial Training [CU:3] {NTCC}	

Credit s	25	26	25	26 gramme Credits	24	24	24	24
9	Principles of Economics for Engineers (ECN109) [CU:3, L-3] {HUC}	Environmental Studies 2 (ENV106) [CU:2, L-2] {AEC}						
8	Environmental Studies 1 (ENV101) [CU:2, L-2] {AEC}	French Grammar (FOL- 103)/German Grammar (FOL-104) [CU:1, L-1] {VAC}						

AC	Allied Course	SEC	Skill Enhancement Course
AEC	Ability Enhancement Course	VAC	Value Added Course
CC	Core Course	HUC	Humanities Course
GE	General Elective	BSC	Basic Science Course
OE	Open Elective	ESC	Engineering Science Course

SC	Skill component	NTCC	Non Teaching Credit Course
SE	Specialization Elective Course		

Proposed Model Framework

Sr.	Category	Sem-	Total	AICTE							
No.		I	II	III	IV	V	VI	VII	VIII		MFW
1.	Basic	9	8	4	4	0	0	0	0	25	23
	Sciences										
2.	Engg. Science	8	13	0	0	0	3	0	0	28	29
3.	Humanities	3	0	0	0	3	0	0	0	6	12 including English & Other VAC
4.	VAC (BS)	1	1	0	0	0	0	0	0	2	NA
5.	VAC (FOI)	1	1	0	0	0	0	0	0	2	NA
6.	VAC (CS)	1	1	0	0	0	0	0	0	2	NA (included above in Humanities)
7.	AECC (EVS)	2	2	0	0	0	0	0	0	4	Mandatory Course
8.	Core Courses	0	0	20	22	12	8	0	0	58	59
9.	Spl. Elective	0	0	0	0	4	4	8	4	20	18-20
10.	Domain Elective	0	0	0	0	3	3	6	3	15	18
11.	Open Elective	0	0	0	0	0	3	3	3	9	9
12.	NTCC	0	0	0	0	2	3	7	14	26	15
13.	SEC	0	0	1	0	0	0	0	0	1	
	TOTAL	25	26	25	26	24	24	24	24	198	

List of Specialization subjects

Specialization	Subject 1	Subject 2	Subject 3	Subject 4	Subject 5
AI & ML	AI & ML	Statistical	Machine	Soft	Natural
		Computing	Learning	Computing	Language
		Techniques			Processing
		Using R			
Cloud	Cloud	Virtualization	AI & ML	Big Data on	Cloud
Computing	Computing	and Cloud	on Cloud	Cloud	Application
		Architecture			Development
					& Deployment
Cyber	Cyber	Secure	Web And	Cyber	Risk Analysis
Security	Security	Communication	Mobile	Forensics	& Assessment
		and	Security		
		Cryptography			
Data Science	Data Science	Statistical	Machine	Fundamentals	Big Data
		Computing	Learning	of Data	Analytics
		Techniques		Science and	
		Using R		Analytics	
IOT & Block	IOT & Block	IOT Security	Introduction	TOI	Blockchain
Chain	Chain		to	architecture	Components
			Raspberry		

	Pi &	and its	and
	Arduino	Protocols	Architecture

Program Structure for B. Tech. CSE (Batch 2023) Semester I

Sr. No.	Course Code	Course Title	Type of course	Hours per week		eek	Credits
				L/DS*	Т	P	
1		Engineering Physics -I (Semiconductor Physics)	Basic Science course	4	0	2	5
2		Mathematics-I	Basic Science course	4	0	0	4
3		Programming for Problem Solving-I	Engineering Science Course	3	0	4	5
4		Engineering Graphics & Design	Engineering Science Course	1*	0	4	3
5	PSY-101	Understanding Self for Effectiveness	Value Added Course (Behavioral Science)	1	0	0	1
6	FOL- 101/FOL-102	Introduction to French Culture & Language/ Introduction to German Culture & Language	Value Added Course (Foreign Business Language)	1	0	0	1
7	ENG-101	Communication Skills-I	Value Added Course (Communication Skills)	1	0	0	1
8		Fundamentals of Economics for Engineers	Humanities Course	3	0	0	3
9	ENV-101	Environmental Sciences-I	AECC	2	0	0	2
		TOTAL		20	0	10	25
			Total Credits	Min Required: 25			d: 25

Course Title: Engineering Physics

	L	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT UNITS
-			_		-
	4	0	2	0	5

4 0 2	U	5
	Weightage	Teaching
		Hours
Unit I: Modern Physics	25%	12 H
Qualitative review of different experiments-Black body, Planck's		
Hypothesis, Photoelectric and Compton Effect. de-Broglie waves, Dual		
Nature of Matter, Matter waves, Significance of Wave Functions,		
Uncertainty principle, Schrodinger Wave Equation, Operators in Quantum		
Mechanics, Particle in a One-Dimensional Box, Application of a particle		
in a box (dimensional confinement)		
Unit II: Physics of Solids	25%	11 H
Types of solids, Crystal structure: Lattice points and space lattice, basis,		
unit cell, primitive cell, crystal systems, Bravais space lattice, diamond		
structure, Electrical conduction in solids: band theory of solids, distinction		
between metals, semiconductors and insulators, Semiconductors: intrinsic		
and extrinsic semiconductors, Density of states, Occupation probability,		
Fermi level, Effective mass, Carrier generation and recombination, Carrier		
transport: diffusion and drift, p-n junction, Metal-semiconductor junction		
(Ohmic and Schottky)		
Unit III: Measurements	25%	12 H
Four-point probe and van der Pauw measurements for carrier density,		
resistivity, and hall mobility; Hot-point probe measurement, capacitance-		
voltage measurements, parameter extraction from diode I-V		
characteristics, DLTS, band gap by UV-Vis absorption and Emission		
properties of semiconductors.		
Unit IV: Light semiconductor interactions	25%	11 H
Coherent Sources, Interference, Newton's rings, Diffraction: Fresnel and		
Fraunhofer diffraction, Fraunhofer diffraction at a Single Slit, Plane		
Transmission grating, Induced Absorption, Spontaneous and Stimulated		
Emission, Einstein Coefficients, Population inversion, Concept of three		
and four level Lasers, semiconductor laser (construction and working),		
photovoltaic effect and LEDs.		

List of Experiments (Total:60 Hours)

- 1. To determine the dispersive power of a given prism
- 2. To measure the angle of prism with the help of a spectrometer
- 3. To determine the wavelength of the given laser source using standard grating
- 4. Experimental Determination of Planck's constant using Light Emitting Diodes (LEDs) and Photoelectric Effect
- 5. To determine the wavelength of sodium light by Newton's ring experiment
- 6. To plot the characteristics curves of a p-n junction diode and calculate its resistance
- 7. To determine percentage of transmission of light for a semi-transparent film using Lummer Brodhum photometer
- 8. To determine Hall Potential and Hall Coefficient.
- 9. To measure resistivity of a semiconductor by Four Probe method at different temperatures and determine the Band-gap
- 10. To study the characteristics of LED and Laser diodes.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Get familiar about the basics of quantum mechanics to understand the band theory of solids
- 2. To understand the physics of crystalline solids specifically aiming to semiconductor structures like silicon and germanium
- 3. To familiarize students about basic semiconducting devices such as p-n junction and related such as solar cells, LED' and their theoretical aspects
- 4. To understand the measurement equipment to measure conductivity, carrier concentration and band gap in semiconductor
- 5. To Learn the various physical aspects on the light semiconductor interactions like interference, diffraction, absorption and emission and related applications

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
J. Singh	Semiconductor Optoelectronics: Physics and Technology	McGraw- Hill Inc.	1995	978-0071135771
B. E. A. Saleh and M. C. Teich	Fundamentals of Photonics	John Wiley & Sons, Inc.	2007	9780471839651
S. M. Sze	Semiconductor Devices: Physics and Technology	Wiley	2008	978-0470537947
A. Yariv and P. Yeh	Photonics: Optical Electronics in Modern Communications	Oxford University Press, New York	2007	978-0195179460
P. Bhattacharya	Semiconductor Optoelectronic Devices	Prentice Hall of India	1997	978-0134956565

Course Title: Mathematics-I

Course Contents/syllabus:		Т	P/S	SW/FW	TOTAL CREDIT UNITS
	4	0	0	0	4
					Teaching Hours
Module I : Matrix Algebra				Weightag	ge 15 H

 Elementary operations Reduction of matrices to row echelon form 	
Don't of motiving Don't of a motiving by Echalon form and Normal	
Rank of matrix, Rank of a matrix by Echelon form and Normal form	
• System of Linear Equations (Homogeneous and Non-homogeneous)	
Consistency of system linear equations using Rank	
Solution of system of linear equations by Gauss Elimination method and Gauss-Jordan method	
Cayley-Hamilton theorem (without proof)	
Application of Cayley-Hamilton for finding inverse and power of matrix	
Module II: Differential Calculus 15 H	
• Function with two or more variable, Limit, continuity and Partial differentiation	
Euler's theorem for homogeneous functions	
Maxima and Minima of two variable, Method of Lagrange's	
multiplier	
Taylor's series and Maclaurin's series for function with one and two	
variables	
Module III: Integral calculus 15 H	
• Definite integral: Area of plane region and length of plane curve 25%	
Double Integral, change of order of integration	
Triple integral	
Application to area and volume using double and triple integral	
Module IV Vector Calculus 15 H	
• Scalar and vector fields 25%	
Gradient, Directional derivative, Divergence, Curl and their properties	
• Line integral	
• Green's theorem in plane (without proof)	
• Surface integral	
• Stokes' theorem (without proof)	
Volume Integral	
Gauss-Divergence theorem (without proof)	

Course Learning Outcomes: After studying this course students will be able to:

- 1. Recognize, identify, differentiate and describe the problems like they can classify rows and columns and then to apply different transformations and explain the solutions of system of equations
- 2. Analyze and find solution of systems of equations, partial derivatives, maxima and minima of two variables and expand the functions using Taylor's series
- 3. Understand and calculate single, double and triple integrals and apply knowledge to find area, volume etc.
- 4. Analyze line integral, surface integral and volume integral and some important theorems of vector calculus.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir	Thomas' Calculus (14th edition)	Pearson Education	2018	978-9353060411
James Stewart	Multivariable Calculus (8 th edition)	Cengage	2015	978-1305266643
Erwin Kreyszig	Advanced Engineering Mathematics (10 th Edition)	Wiley		9781119455929, 978-8126554232
Bernard Kolman & David R Hill	Elementary Linear Algebra with Applications	Pearson Education, New Jersey		978-0130182654
N.P.Bali	A textbook of Engineering Mathematics	Laxmi publications	2009	978-8131808320
B.S. Grewal	Engineering Mathematics	Khanna Publishers	2014	978-8193328491
H.K. Dass	Higher Engineering Mathematics	S. Chand	2014	978-8121938907

Course Title: Programming for Problem Solving- I

Course Contents/syllabus:

Unit I: Introduction to computer and programming Unit I: Introduction to computer and programming Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Unit III: Array, String & Functions Unit III: Array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to pointer, function returning pointer, Basics of structure, structure members, accessing						U	INITS
Unit I: Introduction to computer and programming Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Unit III: Array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							5
Unit II: Introduction to computer and programming Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
Unit I: Introduction to computer and programming Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							_
Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions 15 H Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	1 1 0						15 H
Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions 15 H Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
and Algorithms Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	Concepts of Hardware and software, Types of	f soft	ware,	Comp	iler and inte	erpreter,	
Unit II: Fundamentals & Structure of C Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	Concepts of Machine level, Assembly level and	high	ı-leve	l progra	amming, Flo	wcharts	
Features of C language, structure of C Program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	Unit II: Fundamentals & Structure of C					15 H	
conversion, precedence and associativity, I/O functions Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	Features of C language, structure of C Program, comments, header files, data types,					a types,	
Unit III: Array, String & Functions Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to						is, type	
Concepts of array, one- and two-dimensional arrays, declaration and initialization of arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
arrays, string, string storage, Built-in string functions, Concepts of user defined functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	Unit III: Array, String & Functions					15 H	
functions, prototypes, definition of function, parameters, parameter passing, calling a function, recursive function, Macros, Pre-processing Unit IV: Pointers Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	Concepts of array, one- and two-dimensional arrays, declaration and initialization of					ation of	
function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to	arrays, string, string storage, Built-in string	funct	ions,	Conce	pts of user	defined	
function, recursive function, Macros, Pre-processing Unit IV: Pointers 15 H Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to							
	Unit IV: Pointers						15 H
pointer, function returning pointer, Basics of structure, structure members, accessing							
r,, weeks and some states of substance, substance in the states of substance in the state in the stat	pointer, function returning pointer. Basics of structure, structure members, accessing					ccessing	
structure members, nested structures, array of structures, structure and functions,							
structures and pointers	structures and pointers						

SW/FW

Lab/ Practical details, if applicable: (Total: 60 Hours)

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out hands on experience in programming

- 1) Write a program to that performs as calculator (addition, multiplication, division, subtraction).
- 2) Write a program to find area of triangle(a=h*b*.5) a = area h = height b = base
- 3) Write a program to calculate simple interest (i = (p*r*n)/100) i = Simple interest p = Principal amount r = Rate of interest n = Number of years
- 4) Write a C program to interchange two numbers.
- 5) Write a C program to enter a distance in to kilometre and convert it in to meter, feet, inches and centimetre
- 6) Write a program to compute Fahrenheit from centigrade (f=1.8*c +32)
- 7) Write a C program to find out distance travelled by the equation $d = ut + at^2$
- 8) Write a C program to find that the accepted number is Negative, or Positive or Zero.
- 9) Write a program to read marks of a student from keyboard whether the student is pass or fail (using if else)
- 10) Write a program to read three numbers from keyboard and find out maximum out of these three. (nested if else)
- 11) Write a C program to check whether the entered character is capital, small letter, digit or any special character.
- 12) Write a C program to read no 1 to 7 and print relatively day Sunday to Saturday.
- 13) Write a C program to find out the Maximum and Minimum number from given 10 numbers
- 14) Write a C program to input an integer number and check the last digit of number is even or odd.
- 15) Write a C program to find factorial of a given number.
- 16) Write a program to reverse a number.
- 17) Write a program to generate first n number of Fibonacci series
- 18) Write a program to find out sum of first and last digit of a given number.
- 19) Write a C program to find the sum and average of different numbers which are accepted by user as many as user wants
- 20) Write a program to calculate average and total of 5 students for 3 subjects (use nested for loops)
- 21) Read five persons height and weight and count the number of person having height greater than 170 and weight less than 50, 24. Write a program to check whether the given number is prime or not.
- 22) Write a program to evaluate the series $1^2+2^2+3^2+....+n^2$
- 23) Write a C program to find 1+1/2+1/3+1/4+...+1/n.
- 24) Write a C program to find 1+1/2!+1/3!+1/4!+.....+1/n!.
- 25) Write a program to evaluate the series sum= $1-x+x^2/2!-x^3/3!+x^4/4!....-x^9/9!$

Course Learning Outcomes:

- 1. Formulate algorithm/flowchart for given arithmetic and logical problem
- 2. Translate algorithm/flowchart into C program using correct syntax and execute it
- 3. Write programs using conditional, branching, iteration, and recursion
- 4. Decompose a problem into function
- 5. Develop an application using the concepts of array, pointer, structure, and file management to solve engineering and/or scientific problems

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Pradip Dey, Manas Ghosh	Fundamentals of Computing and Programming in C	Oxford University Press	2009	978-0198084563
Gottfried	Programming with C	Tata McGraw- Hill Publishing Company Limited	2nd edition, 2005	978-0070593695
Kernighan B W and Ritchie D M	C Programming language, Second edition	Prentice Hall	2nd edition, 1988	978-0131103627
R.G. Dromey	How to Solve it by Computer	Pearson Education	Fourth Reprint, 2007	978-8131705629

Course Title: Engineering Graphics and Design

Course Level: UG (B. Tech. Computer Science)

L/DS*	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
1*	0	4	0	3

·	Teaching Hours
Unit I: Introduction to Engineering Drawing and Computer Aided Drawing	08 H
Drawing instruments and accessories, Types of lines and lettering. Use of Plain	1
Scales, Diagonal Scales and Representative Fraction.	
AutoCAD LT:: Introduction to AutoCAD, Basic commands for 2D drawing like:	
Line, Circle, Polyline and Rectangle	
Unit II: Projections of Points and Lines	10 H
Introduction to Projections of the points located in Ist quadrant. Projections of line	
with its inclination to a reference plane. True length and inclination with the	
reference planes.	
AutoCAD LT: Basic commands draw lines and shapes in 2D. Basic Text	
annotating and dimensioning style	
Unit III: Projections of Planes, Solids	06 H
Projections of planes (polygons, circle and ellipse) with its inclination to a reference	
plane	
Projection of regular rectilinear and circular solids (prisms, pyramids. cones,	
cylinders, spheres etc.) in Ist Quarter	
AutoCAD LT: Commands on 2D drafting and modify tools like copy, paste,	
stretch, offset, move, chamfer, fillet, extend, trim. Develop and draw plans of	
objects in 2D.	
Unit IV: Sections of Solids and Surface Development and Orthographic	12 H
projections in AutoCAD.	
Section of solids and Development of surfaces: Simple Geometrical Solids e.g.	
Cube, Cuboids, Cone, Cylinder, Pyramid, Prism etc. Interpenetration of Solids.	
AutoCAD LT: Develop and draw projections of objects in elevations and sections	
through 2D CAD.	
Basic rendering in the AutoCad LT. Manipulate, alter and present existing drawings	
in 2D CAD through various tools and techniques of rendering.	

Course Learning Outcomes:

At the end of the course, the students will be able to:

- 1. Know and understand the conventions and the methods of engineering drawing.
- 2. Identify and develop understanding of interrelationship between 2D and 3D form of simple object, with the help of orthographic Projections
- 3. Analyse basic geometry and comprehend the theory of projection
- 4. Build and Create models of simple built form with computer software for engineering drawing.

Lab/ Practical details: (Total Hours: 60)

Objective: The laboratory exercises in this section have been so designed that the students learn to adapt to technology.

They must prepare portfolio of drawing sheets on the following topics

- 1. Practice sheet (which includes dimensioning methods, different types of line, construction of different polygon, divide the line and angle in parts, use of stencil)
- 2. Plane scale and diagonal scale
- 3. Projection of line
- 4. Orthographic Projection of planes
- 5. Orthographic Projection of solids, section of solids and development of surfaces
- 6. In addition, experiments /exercises will be performed on AutoCAD also.
- 7. At least one orthographic drawing on Computer using AutoCAD commands.

Text / Reference Books:

Author	Title	Publisher	Year of publication	ISBN
Bhatt, N. D.	Engineering Drawing; Plane and Solid Geometry.	Charotar Publishing House Pvt. Limited.	2010	978- 93803581 78
Dhawan R K	Fundamentals of Engineering Drawing	S Chand	2014	978- 12193926 3

COURSE CODE: PSY101 (Understanding Self for Effectiveness)

L	Т	P	Total Credits
1	0	0	1

	Total Teaching Hours
Unit I: Self: Core Competency	4.5 h
Understanding of Self, Components of Self – Self identity, Self concept, Self	
confidence, Self image, BIG5 Factors	
Unit II: Techniques of Self Awareness	4.5 h
Exploration through Johari Window, Mapping the key characteristics of self,	
Framing a charter for self Stages – self awareness, self acceptance and self realization	

Unit III: Self Esteem & Effectiveness	4.5 h
Meaning, Importance, Components of self esteem, High and low self esteem,	
Measuring your self esteem	
Unit IV: Building Positive Attitude and Emotional Competence	4.5 h
Meaning and nature of attitude, Components and Types of attitude, Importance and relevance of attitude Emotional Intelligence – Meaning, components, Importance and	
Relevance Positive and negative emotions, Healthy and Unhealthy expression of emotions	

Course Learning Outcomes: At the end of this course, the students will be able to:

- 1. The student will apply self-introspection as a tool for self-awareness.
- 2. The student will understand self-concept for self-recognition, self-improvement and perception of others.
- 3. The student will be able to analyze their physical self, social self, the competent self and psychological self.
- 4. The student will be able to analyze what motivates his/her actions and the actions of others

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Singh A.	Achieving Behavioural	Wiley	2012	97881265
	Excellence for Success	Publication		8027
Towers, Marc	Self Esteem	American	1995	97818849
		Media		26297
Pedler Mike, Burgoyne	A Manager's Guide to Self-	McGraw-	2006	978-
John, Boydell Tom	Development	Hill		00771147
				01
Covey, R. Stephen	Seven habits of Highly	Simon &	2013	978-
	Effective People	Schuster Ltd		14516396
				12
Khera Shiv	You Can Win	Macmillan	2005	978-
				03339374
				02
Gegax Tom	Winning in the Game of	Harmony	1999	978-
	Life	Books		06096039
				25
Singh, Dalip	Emotional Intelligence at	Publications	2006	97807619
	Work			35322
Goleman, Daniel	Emotional Intelligence	Bantam	2007	97805530
,	8	Books		95036
Goleman, Daniel	Working with E.I	Bantam	1998	97805531
Goldman, Damer	WORKING WITH E.I		1990	04622
		Books		04022

COURSE CODE: FOL101 (Introduction to French Culture & Language)

L	T	P	Total Credits
1	0	0	1

Course Contents, by has as	
	Total
	Teaching
	hours

Unit-I Introduction to French language	3 h
Brief introduction of French and Francophone countries	
Presenting oneself	
Getting information about someone else	
Greeting and taking leave	
Asking/giving personal information	
Unit-II- A rendez-vous ; Visiting a place	6 h
Pronouncing and writing numbers in French	
Spell and count numbers	
• Telling the time	
• Temporal expressions	
Communicating in class	
• Fixing an hour, place for a meeting.	
Describing a person.	
Identifying a person, object and place	
Describing relation in a family	
A specific person, object and place	
Unit-III- An interview	4.5 h
Description of objects, people and places	
Nationalities	
• Speaking about one's professions	
• Expressing Actions using regular –er ending verbs; avoir, être; reflexive verbs –	
usage, conjuagation	
• Interview of celebrity	
Unit-IV- At the discotheque	4.5 h
Portrait by a journalist	
Giving a positive or negative reply	
• Asking questions	
• Discussion with a person	
Activities in a day	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic French. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Year	ISBN No
Christine Andant, Chaterine Metton, Annabelle Nachon, Fabienne Nugue	A Propos - A1 Livre De L'Eleve, Cahier D' Exercices	Langers International Private Limited	2010	978-9380809069

Manjiri Khandekar and Roopa Luktuke	Jumelage - 1 Methode De Fraincais - French	Langers International Private Limited	2020	978-9380809854
Michael Magne, Marie-Laure Lions-Olivieri	Version Originale 1: Cahier d'exercices	Maison Des Langues	2010	978-8484435617

COURSE CODE: FOL102 (Introduction to German Culture & Language)

L	Т	P	Total Credits
1	0	0	1

Course Contents/syllabus:

Course Contents/synabus.	Total Teaching hours
Unit-I Introduction to German Language (Einführung)	3 h
 Introduction to German as a global language, Self-introduction and 	
Greetings, Die Alphabeten, Phonetics: the sound of consonants and	
vowels, Wie buchstabieren Sie Ihren Name?	
Unit-II- Numbers and everyday conversation (die Zahl und Gespräche)	6 h
• Counting in German from 1-100, Simple Calculation and verb 'kosten' -	
Wie viel kostet das? Plural Forms, Vocabulary: Wochentage, Monate,	
Jahreszeiten, Ordinal numbers and the question - Wann haben Sie	
Geburtstag?	
Unit-III- Regular verbs and nominative case: articles and pronouns (Regelmässige Verben und Nominativ Kasus: Artikel und Pronomen)	4.5 h
Introduction to all personal pronouns and conjugation of Regular verbs	
Detailed exercise on regular verbs. Reading a text on regular verbs.	
Introduction to definite. Vocabulary: Schulsachen und Getränke,	
Nominative case/ Articles (der, die, das) Nominative Pronouns: -	
Applicability of pronouns for both persons and things. Usage of	
nominative Personal Pronouns Introduction of nominative possessive	
pronouns usage of nominative possessive pronouns	
Unit-IV- The Family, Work-life and Professions (Familienmitglieder und Berufe) & Interrogative sentences (W-Fragen)	4.5 h
The Family, Work-life and Professions (Familienmitglieder und Berufe)	
Vocabulary: Professions and conjugation of the verb 'sein' Introduction	
to simple possessive pronouns with the help of the verb 'haben' Usage	
of possessive pronouns. Interrogative sentences (W-Fragen) W-Fragen:	
who, what, where, when, which, how, how many, how much, etc.	
Exercises on the question pronouns	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic German. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context

- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Text / Reference Books:

Author	Title	Publisher	Ye ar	ISBN
Rolf Bruseke	Starten Wir A 1	Langers International Pvt Ltd (Max Hueber Verlag)	20 17	978- 3190160 006
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book	Ernst Klelt Verlog	20 11	978- 8183072 120
Heimy Taylor, <u>Werner</u> <u>Haas</u>	Station en Deutsch Self Study Course German Guide	Wiley	20 07	978- 0470165 515

COURSE CODE: ENG101 (Communication Skills-I)

L	T	P	Total Credits
1	0	0	1

	Total Teaching hours
Unit I: Basic Concepts in Communication	3.5 h
Definition of communication, Nature and process of communication, role and purpose of communication, types and channels of communication, communication networks/flow of communication: vertical, diagonal, horizontal, barriers to communication: physical, language, and semantic, socio-psychological, organizational, gateway to effective communication, towards communicative competence, choosing the appropriate channel and medium of communication, social communication: small talk and building rapport, barriers in communication.	
Unit II: Communication Types	5.5 h
Verbal communication: Oral Communication: Forms, Advantages & Disadvantages, Written Communication: Forms, Advantages & Disadvantages, Introduction of Communication Skills (Listening, Speaking, Reading, Writing), Nonverbal communication: functions and effective use, KOPPACT(Kinesics, Oculesics, Proxemics, Para-language, Artifacts, Chronemics, Tactilics). The implication of appropriate communication; effective ways of using social media, importance of digital literacy.	
Unit III: Reading and Writing Skills	3 h
Significance of reading; Reading Comprehension, gathering ideas from a given text, identify the main purpose and context of the text, evaluating the ideas, interpretation of the text, Paragraph development; essay writing.	
Unit IV: Speaking and Presentation Skills	6 h

Speaking skills: fluency, vocabulary, grammar, and pronunciation; effective speaking: selection of words, your voice, and non-verbal communication, functions of speaking: interaction, transaction, and performance; structuring the message; effective speaking strategies. Planning, preparation, practice, and performance; audience analysis, audiovisual aids, analyzing the non-verbal communication, methods of delivery: impromptu, extemporaneous, memorization, manuscript, and outlining.

Course Learning Outcomes:

- 1. Students will be able to understand the basic processes of communication, both verbal as well as non-verbal—nature, scope, and power of communication processes.
- 2. Students will be able to demonstrate cultural sensitivity in communication and appreciation of cultural variations of diverse socio-cultural contexts.
- 3. Students will be able to develop an awareness of the role of mass media in shaping public psyche, beliefs, and perceptions about social realities and build an informed and critical perspective.
- 4. Students will be able to analyze situations and audiences to make right choices about the most effective and efficient ways to communicate and deliver messages.
- 5. Students will be able to assess various barriers in communication and develop communicative competence thereby for effective communication.

Books/literature

AUTHOR	TITLE	Publisher	Year of publication	ISBN
P. D. Chaturvedi and Mukesh Chaturvedi	Business Communication: Concepts, Cases and Applications	Pearson Education	2006	9788131 701720
Meenakshi Raman and Prakash Singh	Business Communication	Oxford University Press	2012	9780198 077053
Jeff Butterfield	Soft Skills for Everyone	Cengage Learning	2017	9789353 501051

Course Title: Principles of Economics for Engineers

Course Contents/syllabus:	L	T	P/S	SW	V/FW	TOTAL CREDIT UNITS
	3	0	0		0	3
						Teaching
						Hours
Unit I: Introduction to Economics						13 H
Nature and definition of Economics, Basic proble	ms (of E	conomic	es,		
Economics as a positive science. Relationship of Economics with other						
social sciences and Computer engineering.						
Production possibility Curve						
Unit II: Concept of Demand and Supply						13 H

Demand, its types, its determinants, elasticity of demand, how the concept is	
used in decision making. Supply and its determinants, elasticity of supply.	
Utility analysis: cardinal and ordinal utility analysis. Laws of utility.	
Consumer equilibrium in cardinal approach and ordinal approach,	
Indifference curves and its properties.	
Unit III: Economic behavior of firms	13 H
Production function, law of variable proportion, law of returns to scale,	
Concepts of Isoquants, Marginal rate of Technical Substitution, producer	
equilibrium by using isoquants. Cost concepts and its classification, short	
run and long run cost theories. Relationship between Marginal cost and	
average cost	
Unit IV: Markets and introduction to Macro economics	13 H
Different market structure, perfect competition, monopoly, Monopolistic,	
Oligopoly, and duopoly market structure. Break even analysis.	
Circular flow of income, national income concepts, inflation,	
unemployment, Consumption: Keynesian consumption function.	

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand and analyze how society manages its scarce resources for achieving maximum utility
- 2. To make familiar with various economic concepts and tools to analyze economic problems and enable the students how to use in decision making process.
- 3. Learn about how an economic agent behaves as a consumer and as a producer.
- 4. Understand the different forms of markets in an economy and expose to basic concepts in macroeconomics

Text / Reference Books:

Author	Title	Publisher	Year of Publication	ISBN
Ahuja H. L	Modern Economics	S. Chand & Co.Ltd	2016	935- 2531469
Ahuja H. L	Business Economics	S. Chand & Co.Ltd	2018	978- 9352533312
Dornbusch, R., Fischer, S., Startz, R	Macroeconomics, 12th ed	McGraw-Hill	2018	978- 0073375922
Mankiw, N	Macroeconomics	Worth Publishers	2016	978- 9386668424
Mankiw, N	Principles of Economics	Cengage Learning	2000	978- 0030270178

COURSE CODE: (Environmental Studies-I)

L	T	P	Total Credits
2	0	0	2

	Teaching hours
Unit-1- Multidisciplinary nature of environmental studies	9 h

Multidisciplinary nature of environmental studies: Definition, scope and importance;	
components of environment –atmosphere, hydrosphere, lithosphere and biosphere.	
Concept of sustainability and sustainable development.	
Unit-2-Ecosystems	9 h
Ecosystem: What is an ecosystem; Structure and function of an ecosystem; Energy flow in the ecosystem; Food chains, food webs and ecological succession. Case studies of the following ecosystems: Forest ecosystem, Grassland ecosystem, Desert ecosystem Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).	
Unit-3- Natural Resources	9 h
Natural resources: Land resources and land use change, land degradation, soil erosion and desertification. Deforestation: causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal population. Water Resources-Use and over-exploitation of surface and groundwater, floods, drought, conflicts over water (international and inter-state). Heating of earth and circulation of air; air mass formation and precipitation. Energy resources- renewable and non-renewable energy sources, use of alternate energy sources, Growing energy needs, Case studies.	
Unit-4- Biodiversity and its conservation	9 h
Biodiversity: Levels of biological diversity: genetic, species and ecosystem diversity; Biogeographic zones of India; biodiversity patterns and global biodiversity	

Course Learning Outcomes: At the end of this course, the students will be able to develop:

- 1. Appreciate the multi-disciplinary nature of environmental science
- 2. Understand natural resources and evaluate limitations surrounding renewable and non-renewable resources
- 3. Understand the nuances of ecosystem and learn about behaviour of various ecosystem
- 4. Learn about the types, services and threats to our biodiversity and importance of conserving it.

AUTHOR	TITLE	Publisher	Year of publicati on	ISBN
William P. Cunningham, Mary Ann	Principles of	McGraw-Hill	2019	9781260
Cunningham	Environmental Science			219715
Dash and Dash	Fundamentals of ecology	Tata McGraw-Hill Education	2009	978- 0070083 660
William P. Cunningham, Mary Ann Cunningham, Barbara Woodworth Saigo	Environmental Science: A global concern,	McGraw-Hill	2021	9781260 363821
Gaston K.J. and Spicer, J. I.	Biodiversity – An Introduction 2 nd edition	Blackwell Publishing	2004	978-1- 405- 11857-6

Program Structure for B. Tech. CSE

Semester II

Sr. No.	Course Code	Course Title	Type of course	Hours per week		Credits	
				L	Т	P	
1		Basic Electrical Engineering	Engineering Science course	4	0	2	5
2		Mathematics-II	Basic Science course	4	0	0	4
3	CSE-104	Object Oriented Programming using C++	Engineering Science Course	3	0	4	5
4		General Chemistry-I	Basic Science course	3	0	2	4
5		Manufacturing Practices-I	Engineering Science Course	3	0	0	3
6	ENG-103	Communication Skills- II	Value Added Course (Communication Skills)	1	0	0	1
7	PSY-106	Individual, Society and Nation	Value Added Course (Behavioral Science)	1	0	0	1
8	FOL- 103/FOL-104	French Grammar/ German Grammar	Value Added Course (Foreign Business Language)	1	0	0	1
		TOTAL		20	0	08	24
			Total Credits	Min Required: 24 Semester Credits: 24			

Course Title: Basic Electrical Engineering

L	T	P/S	SW/FW	TOTAL CREDIT UNITS
4	0	2	0	5

	Weightage	Teaching Hours
Unit I: DC circuits and Networks	25%	18 H
Introduction to electrical circuit elements (R, C and L), Ohm's law,		
series and parallel combination of resistance, capacitance and		
inductance, Kirchhoff's current and voltage law, voltage, and current		
sources (ideal and practical), concept of open and short, Network		
theorems: Thevenin, Norton and Maximum power transfer theorem,		
Transient analysis in DC circuits: first order RC and RL circuit		
Unit II: Alternating circuits	25%	18 H
Generation of alternating voltages and currents, Peak, Average and RMS		
values for alternating currents, Form and Peak factor, Power calculation,		
Reactive power, Active power, Complex power, Power factor, Ac		
through resistance, capacitance and inductance and LCR circuit,		
impedance, reactance, conductance, susceptance Series and Parallel		
circuits, Resonance: series Resonance, basic definition of Q factor &		
Band-width., Power in choking coil.		
Unit III: Magnetism and electromagnetism	25%	18 H
Elementary electrostatics, Magnetic Effect of Electric Current (wire and		
coil), Electromagnetic fields, Magnetic field due to electric current		
(straight wire and coil), Force on Current-carrying Conductor Placed in		
a Magnetic Field, Ampere's Circuital Law, Biot-Savart Law, torque		
experienced by a coil, introduction to magnetic circuits: Magnetomotive		
force (m.m.f.), Reluctance, Permeance, theory of magnetic circuits,		
Electromagnetic induction, self and mutual inductance		
Unit IV: Materials for Electrical engineering and devices	25%	18 H
Elementary concepts of materials, Dielectric Properties of Insulators in		
Static and Alternating field, Magnetic Properties and Superconductivity,		
Semiconductor Materials, transformer, concepts of Electrical machines:		
DC and AC machines		

List of Experiments (Total:60 Hours)

- 1. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 2. To study C.R.O. as display and measuring device by recording sines and square waves, output from a rectifier, verification (qualitative) of law of electromagnetic induction and frequency of A.C. mains.
- 3. To plot the Lissajous figures and determine the phase angle by C.R.O
- 4. To determine self inductance of a coil by Anderson's bridge
- 5. To determine the mutual inductance of two coils by Absolute method.
- 6. To determine an unknown Low Resistance using Potentiometer
- 7. To verify the Thevenin and Norton theorems. In digital meters
- 8. To verify the Superposition, and Maximum power transfer theorems
- 9. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency,(b) Impedance is not available at resonance, (c) Quality factor Q, and (d) Band width.
- 10. To determine the frequency of A.C. mains using sonometer
- 11. To study B-H curves for different ferromagnetic materials using C.R.O. w/o CRO

Course Learning Outcomes: After studying this course students will be able to:

- 1. Develop an ability to apply fundamental and advance knowledge of mathematics, science and engineering to solve and analyze the electrical and magnetic circuits
 - 2. To understand the fundamentals and applications of Alternative currents
 - 3. Learn the concepts of electromagnetism

4. Apply electrical and magnetic circuits in different types of machines, along with concepts of superconductivity

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
V.K Mehta and Rohit Mehta	Basic Electrical Engineering	S.Chand publication	2006	978-8121908719
D. P. Kothari and I. J. Nagrath	Basic Electrical Engineering: 4 th edition	Tata McGraw Hill	2010	978-9353165727
D. C. Kulshreshtha	Basic Electrical Engineering:2 nd edition	McGraw Hill	2009	978-9353167219
L. S. Bobrow	Fundamentals of Electrical Engineering	Oxford University Press	2011	978-0195105094
E. Hughes	Electrical and Electronics Technology	Pearson	2010	978-8131733660
V. D. Toro	Electrical Engineering Fundamental: 2nd edition	Prentice Hall India	2015	978-9332551763
V.N Mittle and Arvind Mittle	Basic Electrical Engineering: 2nd edition	TMG publication	2017	978-0070593572

Course Title: Mathematics-II

Course Level: UG (B. Tech. Computer Science)

Course Code:

L	T	P/S	SW/FW	TOTAL CREDIT UNITS
4	0	0	0	4

Course Objectives:

The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. By the end of the semester, students will be able to analyze techniques to solve differential equations, complex analysis problems and Laplace transform which can be further applied to solve practical engineering problems in fluid dynamics, mechanics and modelling of simple electrical circuits etc.

Prerequisites:

Students must have a background of Differential Calculus, Integral Calculus, and Complex numbers.

course contents/synabus.	
	Teaching
	Hours
Module I: Ordinary Differential Equations	15 H

	1
 Overview of solution of ordinary Differential Equations of First Order and first degree 	
• Exact Differential Equations, equations reducible to exact differential	
equation	
• Linear Differential Equations of Higher Order and their solutions,	
Particular Integrals	
Euler Cauchy Equation	
Legendre's Linear Equation	
Simultaneous linear equations with constant coefficient	
Module II: Laplace Transform	15 H
Existence of Laplace transform	
First shifting theorems	
Change of scale property	
 Laplace transform of derivative and integrals 	
• Multiplication by t^n , division by t	
 Evaluation by integrals using Laplace transform 	
Inverse Laplace transform	
Convolution theorem	
 Laplace transform of periodic functions 	
Heaviside function unit step function formula	
Unit impulse functions	
 Second shifting theorems 	
Solution of initial value problem by Laplace transform	
Module III: Functions of Complex Variables	15 H
 De Movier's Theorem and Roots of Complex Numbers 	
Logarithmic Functions	
 Functions of a Complex Variables 	
Limits, Continuity and Differentiability	
 Analytic Function, Necessary and sufficient condition for function to be 	
analytic (without proof)	
Cauchy-Riemann Equations	
Harmonic Conjugate	
Module IV: Complex Integration	15 H
Complex Line Integrals	
Real Line Integrals	
Connection between Real and Complex Line Integrals	
Cauchy Integral Theorem (without proof)	
Cauchy Integral Formula (without proof) Page 1. Cauchy Integral Formula (without proof) Page 2. Cauchy Integral Formula (without proof) Page 3. Cauchy Integral Formula (without proof)	
Power Series, Taylor Series, Laurent Series	
Zeroes and Singularities	
Residues, Cauchy Residue Theorem (without proof)	

Course Learning Outcomes:

At the end of the course, the students will be able to

- 1. Analyze and solve first second and higher order ordinary differential equations using different analytical and numerical methods.
- 2. Learn Laplace Transform and its application.
- 3. Understand the concept of analyticity using Cauchy Riemann Equations and analyze harmonic function and its conjugate.
- 4. Evaluate complex contour integral by applying Cauchy Integral Theorem and Cauchy Integral Formula and understand to classify singularities and poles and find residue.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publicat ion	ISBN
George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir	Thomas' Calculus (14th edition)	Pearson Education	2018	978- 9353060411
James Stewart	Multivariable Calculus (8 th edition)	Cengage	2015	978- 1305266643
Erwin Kreyszig	Advanced Engineering Mathematics (10 th Edition)	Wiley		97811194559 29, 978- 8126554232
Bernard Kolman & David R Hill	Elementary Linear Algebra with Applications	Pearson Education, New Jersey	2019	978- 0130182654
Ruel Churchill,	Complex Variables and Applications	McGraw Hill Education India	2013	978- 9339205157
R.K Jain and S.R.K Iyenger	Advanced Engineering Mathematics	Narosa Publishing House Pvt.,	2016	978- 8184875607
N.P.Bali	A textbook of Engineering Mathematics	Laxmi publications	2009	978- 8131808320
B.S. Grewal	Engineering Mathematics	Khanna Publishers	2014	978- 8193328491
H.K. Dass	Higher Engineering Mathematics	S. Chand	2014	978- 8121938907

Course Title: Object Oriented Programming using C ++ (CSE-107)

L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
3	0	4	0	5

	Teaching
	Hours
Unit I: Objects and classes	12 H

Introduction to OOP, C vs C++, Encapsulation and aabstraction, Class definition, Class structure, Objects, Passing and returning objects as arguments, Static data member, array of objects, member functions, Inline functions.	
Unit II: Constructors, Destructors and Overloading	11 H
Constructors, Destructors, Dynamic creation and destruction of objects Array of objects,	
this pointer, Friend function, Operator overloading: Unary, Binary operators.	
Unit III: Inheritance	11 H
Inheritance, Base class and derived class, Public, private and protected	
inheritance, Single, Multiple, Multilevel, Hybrid inheritance.	
Unit IV: Polymorphism, Exceptions and Templates	11 H
Polymorphism, Compile Time and run Time, static and dynamic binding,	
virtual functions, pure virtual functions, Exception handling, Templates.	

Lab/ Practical details:

List of Experiments - with basic instructions (Total: 60 Hours)

Objective: The aim of this section of Lab is to teach experiments of object-oriented programming using C++ pertaining to the units being taught in the theory paper specifically related to classes, objects, inheritance and overloading.

- 1. WAP in C++ to find the sum of individual digits of a positive integer.
- 2. WAP in C++ to generate the first n terms of the sequence
- 3. WAP to find both the largest and smallest number in a list of integers.
- 4. WAP to illustrate New and Delete Keywords for dynamic memory allocation
- 5. WAP Illustrating Class Declarations, Definition, and Accessing Class Members.
- 6. WAP to illustrate default constructor, parameterized constructor and copy constructors
- 7. WAP to Implement a Class STUDENT with appropriate member functions and variables.
- 8. WAP to demonstrate the i) Operator Overloading. ii) Function Overloading.
- 9. WAP to demonstrate Friend Function
- 10. WAP to access Members of a STUDENT Class Using Pointer to Object Members.
- 11. Write C++ programs that illustrate how the following forms of inheritance are supported: a) Single inheritance b) Multiple inheritance c) Multi level inheritance
- 12. WAP containing a Possible Exception. Use a Try Block to Throw it and a Catch Block to Handle it Properly.

Course Learning Outcomes:

- 1. The student is expected to get familiar about concepts of object-oriented programming.
- 2. To understand the use of classes and objects and implement the design of object-oriented programs.
- 3. To familiarize with constructors, destructors and their types.
- 4. To demonstrate operator overloading, inheritance and their various forms.
- 5. To use polymorphism in object-oriented scenarios, exception handling and templates.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
E Balagurusamy	Object Oriented Programming with C++ (2017) 7th ed.	McGraw Hill Education	2017	9352607996

Schildt H.	C++: The Complete Reference,	Tata McGraw Hill	2003	007053246X
Robert Lafore	Object Oriented Programming in Turbo C++	Galgotia Publications	1991	8185623228
Walter Savitch	Problem solving with C++: The Object of Programming	Pearson Education.	2002	0321136640

Course Title: General Chemistry

Course Contents/syllabus:	L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	1	0	4

	3	0	1	0	4
		Weightage	_		
					Hours
Unit-1- The Atomic Theory				25%	14 H
Bohr's theory, Wave mechanics: de' Broglie equation			_		
Uncertainty Principle and its significance, Schrödinger's Quantum numbers and their significance. Radial and					
functions for hydrogen atom. Radial and angular dist					
Shapes of s, p, d and f orbitals. Pauli's Exclusion Princip					
of maximum multiplicity, Aufbau's principle and					
Variation of orbital energy with atomic number.			,		
<i>S</i> ,					
Unit-2- The Periodic Table : History and Periodic Ta	ends	S		25%	14 H
Periodic properties					
s, p, d, f block elements, the long form of periodic table.					
discussion of the following properties of the elements, v	vith r	efere	nce to		
s and p-block.	~-		_		
(a) Effective nuclear charge, shielding or screening effective nuclear charges are strongly not strongly as the strongly nuclear charges are strongly nuclear charges.	et, SI	ater r	ules,		
variation of effective nuclear charge in periodic table.					
(b)Atomic radii (van'der Waals)					
(c)Ionic and crystal radii. (d)Covalent radii (octahedral and tetrahedral)					
(e) Ionization enthalpy, Successive ionization enthalpies	and	facto	rc		
affecting ionization energy. Applications of ionization e			15		
(f) Electron gain enthalpy, trends of electron gain enthal		py.			
(g) Electronegativity, Pauling, Mullikan, Allred Rachow		es.			
electronegativity and bond order, partial charge	~	,			
Unit-3-Fundamentals of Organic Chemistry				25%	13 H
Classification, and Nomenclature, Hybridization, Shape	es of	mole	cules,		
Influence of hybridization on bond properti	es.	Elec	tronic		
Displacements: Inductive, electromeric, resonance					
effects, hyperconjugation and their applications; Dipole					
Base Equilibria: Brönsted-Lowry concept of acid-					
solvated proton, factors affecting relative strength of					
organic acids and bases, types of acid-base reactions.	Class	iticati	on of		

Lewis acids, Hard and Soft Acids and Bases (HSAB) Application of HSAB principle. Application of HSAB principle. Qualitative treatment of acid – base titration curves (calculation of pH at various stages). Theory of redox indicators; selection of indicators and their limitations. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleophilicity and basicity; Types, shape and relative stabilities of reaction intermediates (Carbocations, Carbanions, Free radicals and Carbenes). Organic reactions and their mechanism: Addition, Elimination and Substitution reactions.		
Unit-4- States of matter: Gases	25%	13 H
Deviations from ideal gas behavior, compressibility factor, and its variation with pressure for different gases. Causes of deviation from ideal behavior. van der Waals equation of state, its derivation and application in explaining real gas behaviour; van der Waals equation expressed in virial form, Boyle temperature. Isotherms of real gases and their 45 comparison with van der Waals isotherms, continuity of states, critical state, critical and van der Waals constants, law of corresponding states. Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure. Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy of gaseous molecules.		

List of Experiments (Total:30 Hours)

Inorganic Chemistry Practicals

- Titrimetric Analysis: Acid-Base Titrations
 - (i) Apparatus calibration and preparation of solutions of different molarity/normality of titrants.
- (ii) Estimation of carbonate and hydroxide present together in mixture.
 - (iii) Estimation of carbonate and bicarbonate present together in a mixture.

Organic Chemistry Practicals

• Separation of a mixture of organic compounds by thin layer chromatography and ascending paper chromatography.

Physical Chemistry Practicals

- Surface tension measurements.
 - a. Determine the surface tension of different liquids by (i) drop number (ii) drop weight method.
 - b. Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature using Ostwald's viscometer.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Knowledge of evolution of scientific theories to explain the atomic structure, molecular geometry and physico-chemical behaviour of atomic matter made from elements in periodic table.
- 2. Focus on fundamentals of organic molecules, structure, stereochemistry, bonding, reactivity and reaction mechanisms.
- 3. Familiarization with gaseous state of matter and its physical laws governing it

Text / Reference Books:

A. Theory

- J.D. Lee, Concise Inorganic Chemistry, John Wiley and Sons Ltd,5th edition (2016), ISBN 978-8126515547
- Greenwood, Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, 2nd edition (1997), ISBN 978-0750633659
- M. B. Smith, J. March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley-Interscience, 8th Edition (2015), ISBN 978-8126556588
- Atkins P.W, Julio de Paula, Physical Chemistry, Oxford University Press, ELBS 11th edition (2018), ISBN 978-0198814740

B. Practical

- J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, Vogel's Quantitative Chemical Analysis, Longman, 6th edition (1999), ISBN 978-0582226289
- A.I. Vogel, A.R. Tatchell, B.S. Furnis, Vogel's Textbook of Practical Organic Chemistry, Prentice Hall, 5th edition (2003), ISBN 978-0582462366
- Shoemaker, D.P Garland, C.W Nibler, J.W., Experiments in Physical Chemistry, McGraw Hill Inc, 8th edition (2008), ISBN 978-0070570078

Course Title: Manufacturing Practices-I

L	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	0	0	3

Course Contents/syllabus:

	Weightage	Teaching
		Hours
Unit I: Manufacturing methods	25%	13 H
Casting, forming, machining, joining, advanced manufacturing methods		
Unit II: CNC Machining and Fitting tools	25%	14 H
CNC machining, Additive manufacturing, Fitting operations & power		
tools		
Unit III: Electronics and Carpentry	25%	13 H
Electrical & Electronics, Carpentry, Plastic moulding, glass cutting		
Unit IV: Welding	25%	14 H
Metal casting, Welding (arc welding & gas welding), brazing		

Course Learning Outcomes: After studying this course students will be able to:

- 1. Gain knowledge of the different manufacturing processes
- 2. Gain knowledge of CNC machining and other tools
- 3. Understand the concepts of carpentry & Glass cutting
- 4. Understand about significance of Electricals and Electronics in manufacturing industry.
- 5. Gain in-sights on Welding techniques.

	0110			
AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K.	Elements of Workshop Technology	Media Promoters	2008	978- 8185099149
Kalpakjian S. And Steven S. Schmid	Manufacturing Engineering and Technology	Pearson	2018	978- 9332587908
Gowri P. Hariharan and A. Suresh Babu	Manufacturing Technology – I	Pearson	2008	978- 9332582705
Roy A. Lindberg	Processes and Materials of Manufacture	Prentice Hall	1990	978- 8120306639

Course Title: INDIVIDUAL, SOCIETY AND NATION

L	T	P/S	SW/FW/	TOTAL
			PSDA	CREDIT
				UNITS
1	0	0	0	1

	No. of
	Session
Unit-1- Individual differences & Personality	4 H
Personality: Definition& Relevance	
 Importance of nature & nurture in Personality Development 	
Importance and Recognition of Individual differences in	
Personality	
Accepting and Managing Individual differences Intuition, Independ Paragraphy & Supportion (MPTI), PIC5 Footogy	
Judgment, Perception & Sensation (MBTI) BIG5 Factors Unit-2- Managing Diversity	4 H
Cint-2- Managing Diversity	711
Defining Diversity	
Affirmation Action and Managing Diversity	
Increasing Diversity in Work Force	
Barriers and Challenges in Managing Diversity	
Unit-3- Socialization, Patriotism and National Pride	4 H
Nature of Socialization	
Social Interaction	
Interaction of Socialization Process	
Contributions to Society and Nation	

Sense of pride and patriotism	
Importance of discipline and hard work	
Integrity and accountability	
Unit-4- Human Rights, Values and Ethics	3 H
Meaning and Importance of human rights	
Human rights awareness	
• Values and Ethics- Learning based on project work on Scriptures like-	
Ramayana, Mahabharata, Gita etc.	

List of Professional Skill Development Activities (PSDA):

- Project on Understanding Diversity
- Term Paper on Patriotism among Youth

Course Learning Outcomes: On completion of the course:

- To recognize individual differences
- To manage individual differences
- To develop patriotic feelings
- To recognize their self in relation to society & nation

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pa
Department of English, University of Delhi	The Individual & Society	Pearson Education	2010	978- 81317041 72	26 6
Umang Malhotra	Individual, Society, and the World	iUniverse	2004	978- 05956624 01	18 8
Tonja R. Conerly & Kathleen Holmes	Introduction to Sociology 3e	Openstax	2015	97817114 93978	45 8
Daksh Tyagi	"A Nation of Idiots"	Every Protest	2019	978- 81942750 15	35 0

Course Title: French Grammar

	L	T	P/S	SW/FW	Total Credit Units
Course Contents/syllabus:	1	0	0	0	1

	Teaching
	Hours
Unit-I: My family and my house	4 H
Descriptors/Topics	
Talk about your family members	
Usage of possessive adjectives	

Describe your house/apartment	
Prepositions of location	
Negation	
Unit-II- Lifestyle	3 H
Descriptors/Topics	
Talk about your hobbies and pastimes	
Usage of appropriate articles: definite and contracted	
Talk about your daily routine	
Usage of pronominal verbs	
Unit-III- In the city	3 H
Descriptors/Topics	
Filling up a simple form	
Ask for personal information	
Usage of interrogative adjectives	
Give directions about a place	
Ordinal numbers	
Usage of demonstrative adjectives	
Unit-IV- Week-end	3 H
Descriptors/Topics	
Talk about your week-end plans	
Usage of disjunctive pronouns	
Usage of Near Future tense	
Talk about weather	
Write a simple post card	

Course Learning Outcomes: At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyze and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Year of	ISBN No
			Publication	
Christine Andant,	A Propos - A1, Livre	Langers	2010	978-
Catherine Metton,	de l'élève et Cahier	International		9380809069
Annabelle Nachon,	d'exercices.	Pvt. Ltd.		
Fabienne Nugue,				
Collins Dictionaries	Easy Learning French Complete	Collins	2016	978- 0008141721
	Grammar, Verbs and			
	Vocabulary			
Nikita Desai,	Apprenons La	Langers	2017	978-
Samapita Dey	Grammaire	International		8193002681
Sarkar	Ensemble - French	Pvt. Ltd.		

Course Title: German Grammar

L	T	P/S	SW/FW	Total Credit Units
1	0	0	0	1

Course Contents/syllabus:

	Teaching Hours
Module I: Time (Uhrzeit); People and the World: Land, Nationalität und Sprache	4 H
 Introduction of time Read text related to time and teach the students the time expressions Exercises related to Time Adverbs of time and time related prepositions Vocabulary: Countries, Nationalities, and their languages Negation: "nicht/ kein" Ja/Nein Fragen. All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) 	3 Н
 Introduction to irregular verbs and their conjugation e.g. fahren, essen, lesen etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks 	
Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen)	3 Н
 Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles 	
Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship	3 Н
 Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	

At the end of the course, the student shall be able to:

1. Understand information; Express in his own words; Paraphrase; Interpret and translate.

- 2. Apply information in a new way in a practical context
- 3. Analyze and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Text / Reference Books:

Author	Title	Publisher	Y ea r	ISBN No	Pa ge s
Dora Schulz, Heinz Griesbach	Deutsche Sprachlehre Fur Auslander	Max Hueber Verlag	19 84	978- 3190010 066	-
Hartmut Aufderstrasse, Jutta Muller, Helmut Muller	Themen Aktuell: Glossar Deutsch	Max Hueber Verlag	20 03	978- 3190816 903	-
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book German Guide	Goyal Publishers	20 11	9788183 072120	24 8

Course Title: Communication Skills—II (ENG-102)

Course Contents/syllohus	L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
Course Contents/syllabus:	1	0	0	0	1

						Teaching Hrs (H)
Unit I: Basic Concepts in Communication						3 H
Towards communicative competence; choosing the appropriate medium of communication; ways to develop communication, Speaking, Reading, and Writing.	•				f	
Unit II: Communication Types						4 H
Nonverbal communication: detailed analysis, KOPPACT (Kinesics, Oculesics,						
Proxemics, Paralanguage, Artefacts, Chronemics, Tactilics).						
Unit III: Communication and Technology						3 H
Importance of digital literacy and communication on dig	gital j	platfo	rms.			
Unit IV: Presentation Skills					5 H	
Planning, preparation, practice, and performance; audier aids, analyzing the non-verbal communication, methods extemporaneous, memorization, manuscript, and outlini	of d	•				

Course Learning Outcomes:

- Students will be able to understand the need and the methods required to develop communication skills in the areas of listening, speaking, reading, and writing.
- Students will be able to understand the significance of non-verbal communication in various contexts.
- Students will be able to develop an awareness of the role of digital platforms in shaping public psyche, beliefs, and perceptions about social realities and build an informed and critical perspective.
- Students will be able to develop and upgrade their presentation skills.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
P. D. Chaturvedi and Mukesh Chaturvedi	Business Communication: Concepts, Cases and Applications	Pearson Education	2006	9788131701720
Meenakshi Raman and Prakash Singh	Business Communication	Oxford University Press	2012	9780198077053
Jeff Butterfield	Soft Skills for Everyone	Cengage Learning	2017	9789353501051

Program Structure for B. Tech. CSE

Semester III

Sr. No.	Course Code	Course Title	Type of course		Hours per week		Credits
				L	T	P	
1		Data Structures and Algorithms	Core Course	3	0	4	5
2		Computer Organization and Architecture	Core Course	3	0	0	3
3		Python Programming	Engineering Science Course	3	0	2	4
4		Design Thinking	Engineering Science Course	3	0	0	3
5		Probability and Statistics	Basic Science course	4	0	0	4
6		Operating System	Core Course	3	0	2	4
7		IT Workshop	Core Course	0	0	2	1
		momut		10		10	
		TOTAL	Total Credits	19 0 10 2 Min Required: 24		24 ed: 24	
			Total Cituis	Semester Credits: 24			

Course Title: Data Structures (BTech. CSE)

L	T	P/S	SW/FW	TOTAL CREDIT UNITS
3	0	4	0	5

Course Contents/syllabus:

	Teaching
	Hours
Unit I: Linear Data Structures and sorting	15 H

Introduction to data structures, Arrays, Stack, Queues and their operations, Applications.	
Infix to postfix conversions, Evaluation of postfix expression. Searching- (sequential &	
binary), Sorting techniques: (bubble sort, selection sort, insertion sort, quick sort, merge	
sort).	
Unit II: Linked List	10 H
Linked lists, doubly linked list, Circular linked list, operations on linked lists:	
create, insert, display, delete, traverse.	
Unit III: Trees	10 H
Tree terminologies, Binary tree, Tree Transversals (pre-order, post-order and	
in-order), Operations on trees. Binary search tree. AVL Trees.	
Unit IV: Graphs	10 H
Graph terminology, Representation of graphs: Adjacency matrix, traversing a Grap	1
(Breadth first search, Depth first search), Shortest-path algorithms	
(Dijkstra and Floyd) Minimum spanning tree (Prim and Kruskal)	

Lab/ Practical details:

List of Experiments - with basic instructions (Total: 60 Hours)

Objective: The aim of this section of Lab is to teach experiments of data structures pertaining to the units being taught in the theory paper specifically related to arrays, stacks, queues, trees and graphs.

- 1. To implement insert, delete, create and other operations on arrays.
- 2. To implement push and pop on stacks.
- 3. To implement enqueue and dequeue in queues.
- 4. To implement different operations related to linear and circular queues
- 5. To implement TOH and Fibonacci Series using Recursion
- 6. To implement sorting techniques: bubble, insertion, selection, quick, merge sort.
- 7. To implement operations related to linked list: singly and doubly.
- 8. WAP to implement a menu driven approach for given operations: Create, Display, merge, union, intersection in single list.
- 9. Write a menu driven program that implements doubly linked list.
- 10. Write a menu driven program that implements Singly circular linked list for the given operations: Create, Display, Count, Insert, Delete, Search.
- 11. WAP to create a binary tree.
- 12. WAP for in order, preorder and post order traversal in binary tree.
- 13. Implementation of creation of graphs.
- 14. Implementation of Graphs: Graph traversals.
- 15. Implementation of MST: Prims and Kruskal.

Course Learning Outcomes:

- 1. The student is expected to get familiar about the concept of data organization in memory and data structures
- 2. Understand and apply linear data structures like stack, queue, arrays.
- 3. Learn and implement various searching and sorting techniques.
- 4. Learn and understand concept of linked data structures.
- 5. Understand, analyze and apply nonlinear data structures, trees and graphs.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Seymour Lipschutz	Data Structures With C - by Schaum series	Tata McGraw Hill	2017	978-0070701984
Robert Kruse, C.L. Tondo, Bruce Leung Pearson.	Data structures and Program Design in C	Pearson India	2006	8177584235
Tremblay & Sorenson	An Introduction to Data Structures with Application	McGraw Hill Education	2017	0074624717

TOTAL

Course Title: Computer Organization and Architecture

Course Contents/syllabus:						CREDIT
Course Contents/synabus.						UNITS
	3	0	0		0	3
						Teaching
						Hours
Unit I: Introduction						12 H
CPU, memory, input-output subsystems, control us						
architecture of a CPU - registers, instruction execution cycle, RTL						
interpretation of instructions, addressing modes, instruc	tion	set. C	ase stu	dy		
– instruction set of 8085 processor.						
Data representation: signed number representation, fixe						
representations, character representation. Computer a						
addition and subtraction, ripple carry adder, carry loc						
multiplication – shift-and add, Booth multiplier, carry save multiplier, etc.						
Division restoring and non-restoring techniques, floating point arithmetic				:		
	Unit II: CPU Design and Peripheral devices					11 H
CPU control unit design: Hardwired and micro-p						
approaches, Case study – design of a simple hypothet						
system design: semiconductor memory technologies, me						
Peripheral devices and their characteristics: Input-out						
device interface, I/O transfers – program controlled, i						
DMA, privileged and non-privileged instructions, soft						
exceptions. Programs and processes -role of interrup	ots ir	n prod	cess st	ate		
transitions, I/O device interfaces – SCII, USB.						
Unit III: Pipelining						11 H
Basic concepts of pipelining, throughput and speedu						
Parallel Processors: Introduction to parallel processors, Concurrent access to				to		
memory and cache coherency.						
Unit IV: Memory Organization						11 H
Memory interleaving, concept of hierarchical memory	_					
memory, cache size vs. block size, mapping fund	ctions	s, rep	olaceme	ent		
algorithms, write policies.						

- 1. Understand functional block diagram of microprocessor.
- 2. Apply instruction set for Writing assembly language programs.
- 3. Design a memory module and analyze its operation by interfacing with the CPU.
- 4. Classify hardwired and microprogrammed control units.
- 5. Understand the concept of pipelining and its performance metrics

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Morris Mano	Computer System Architecture	Pearson	2017	978- 9332585607
David A. Patterson and John L. Hennessy	Computer Organization and Design: The Hardware/Software Interface	Elsevier	2016	978- 9351073376
Carl Hamacher	Computer Organization and Embedded Systems	ТМН	2017	978- 9339218317
John P. Hayes	Computer Architecture and Organization	Pearson	2017	978- 1259028564
William Stallings	Computer Organization and Architecture: Designing for Performance	Pearson	2016	978- 9332570405

Course Title: Python Programming

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4

	Teaching Hours
Unit I: Introduction	13 H
History of Python, Need of Python Programming, Applications, Basics of Python Programming, Using the IDLE, Running Python Scripts, Installation of Jupyter Notebook, Variables, Assignment, Keywords, Input-Output, Indentation, comments	
Unit II: Types, Operators and Expressions	14 H
Types - Integers, Strings, Booleans; Operators- Arithmetic, Comparison (Relational), Assignment, Logical, Bitwise, Membership, Identity, Precedence, Control Flow- if, if-elif-else, for, while, break, continue, loops, types of loops.	
Unit III: Data Structures in Python	14 H

Lists - Operations, Slicing, Methods; Tuples: Creating, Printing, properties	
of tuples, Sets, Dictionaries, Sequences and their properties. Defining	
Functions, Calling Functions, Passing and Returning Arguments, Scope of	
the Variables in a Function - Global and Local Variables	
Unit IV: Python packages and OOPS	13 H
Introduction to PIP, Installing Packages via PIP, Using Python Packages,	
OOPs in Python, Classes, self-variable, Methods, Constructor Methods.	

List of Experiments (Total:36 Hours)

- 1. Perform installation of python, of jupyter notebook
- 2. Execute a basic python program with a print message.
- 3. WAP to Check the Python version on command line
- 4. WAP to display the current date and time.
- 5. WAP to get Multiple inputs From a User in One Line
- 6. WAP which accepts the user's first and last name and print them in reverse order with a space between
- 7. WAP to implement show Operators Precedence and loops.
- 8. WAP to declare, access and print a dictionary9. WAP to check whether a given key already exists in a dictionary.
- 10. WAP to implement functions: call by value
- 11. WAP to show use of local and global variables
- 12. WAP to implement classes and objects in python.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the basics of programming and implement basic python programs, input output functions, types and operators.
- 2. Develop programs using conditional, branching, iteration.
- 3. Learn the functions declaration, implementation, arguments.
- 4. Develop an application using the concepts of list, dictionary, tuples solve engineering and/or scientific problems
- 5. Implement object-oriented principles via python programming.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Paul Barry	Head First Python	O'Reilly Media, Inc.	2016	9781491919538
John V. Guttag	Introduction to computation and programming using python	PHI Publisher.	2016	978- 0262529624
Kenneth A. Lambert	Fundamentals of Python	Cengage	2019	9789353502898
Vamsi Kurama	Python Programming: A Modern Approach	Pearson	2018	978- 9332587526

Course Title: Design Thinking

Course Contents/syllabus:						CREDIT
•	-					UNITS
	3	0	0		0	3
						Teaching
						Hours
Unit I: Introduction						11 H
Introduction to Design Thinking, Introduction to elemen	nts ar	nd pri	nciples	of		
Design, basics of design-dot, line, shape, form as f	funda	ment	al desi	gn		
components, Definition, Design thinking Mindset,	De	sign	Thinki	ng		
business Applications		Ü				
Unit II: Solution Based Thinking						11 H
Design Thinking Vs Scientific Method, Problem Focused Vs Solution						
Focused, Analysis Vs Synthesis, Divergent Thinking Vs Convergent						
Thinking, Visual Thinking, Assumption Testing, Pro	Thinking, Visual Thinking, Assumption Testing, Prototyping, Time for					
Learning and Validation						
Unit III: Design thinking attributes and Processes						11 H
Challenges, Resources -People, Place, Material, Orga	aniza	tional	Fit, T	he		
Aha-Moment, Design Methods, Design thinking Pr	roces	ses -	- Doub	ole		
Diamond Process, 5 step Process etc.						
Unit IV: Design Thinking in Practice						12 H
Design Thinking in Practice: Process Stages of Designing for Growth,						
Design Thinking Tools and Methods, Applications of Design Thinking in						
various sectors with case studies, Social Innovation, IT I	ndus	try, H	ealth ca	are		
Industry etc.						

P/S

SW/FW

TOTAL

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain the fundamentals of Design thinking.
- 2. Model the action plan for various problems using Solution Oriented approach.
- 3. Analyze the significance of various stages in design thinking process.
- 4. Decide the use of tools and methods in alignment with processes.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Shrrutin N Shetty	Design the Future	Notion Press	2018	978- 1644296202
Tim Brown	Change by design	Harper Business	2012	978- 0062337382
David Lee	Design Thinking in the Class Room	Ulysses press	2018	978- 1612438016
William lidwell, Kritina Holden, Jill Butler	Universal principles of design	Rockport Publishers	2010	978- 1592535873
A.K. Chitale and R.C. Gupta	Product Design and Manufacturing	Prentice Hall	2011	978- 8120342828

Course Title: Probability and Statistics

L	T	P	TOTAL CREDIT UNITS
4	0	0	4

Course Contents/syllabus:

	Teaching Hours
Unit I	15 H
Descriptive Statistics: Measure of central tendency, dispersion, skewness and kurtosis.	
Definitions of Probability – classical, statistical, and axiomatic. Conditional Probability	
and Independence, Bayes' theorem, and its applications.	
Unit II	15 H
Random variables: discrete and continuous, density and mass functions. Expected	
values and moment generating functions. Discrete distributions: Uniform, Bernoulli,	
Binomial, Poisson, Geometric, Negative Binomial, Hypergeometric, and their	
properties.	
Unit III	15 H
Continuous distributions: Uniform, Exponential, Gamma, Beta, Weibull, Normal and	
Lognormal, and their properties. Common families of distributions: location and scale	
families. Transformation of random variable and Probability integral transformation.	
Unit IV	15 H
Multiple random variable, Joint and Marginal distributions, Bivariate transformation,	
Covariance and correlation, random sample, and properties of random sample.	

Course Learning Outcomes: On the successful completion of this course the student will be able to understand the

- 1. Basics of descriptive statistics
- 2. Basics of the probability
- 3. Concept of random variable and transformation of random variable
- 4. Statistical distributions and their applications in the real-world problems
- 5. Random sample and their properties

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rohatgi V. K. and Saleh, A.K. Md. E.	An Introduction to Probability and Statistics	2 nd Edition, John Wiley and Sons	2009	9788126519262, 9788126519262
Casella G. and Berger R. L.	Statistical Inference	2 nd Edition, Cengage Learning India	2002	9788131503942, 9788131503942
Hogg R. V., Mckean J. and Craig A. T	Introduction to Mathematical Statistics	7 th Edition, Pearson Education India	2013	9789332519114, 9789332519114

Mukhopadhyay P	Mathematical Statistics	Books and Allied	2016	9788187134930

Course Title: Operating System

	\mathbf{L}	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT UNITS
	3	0	2	0	4

	0	4
		Teaching
		Hours
Unit I: Introduction		12 H
Concept of Operating Systems, Generations of Operating systems, Types of		
Operating Systems, OS Services, System Calls, Structure of an OS -		
Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual		
Machine. Case study on UNIX and WINDOWS Operating System.		
Processes Definition, Process Relationship, Different states of a Process,		
Process State transitions, Process Control Block (PCB), Context switching		
Thread: Definition, Various states, Benefits of threads, Types of threads,		
Concept of multithreads,		
Unit II: Scheduling and Process Communication		11 H
Foundation and Scheduling objectives, Types of Schedulers, Scheduling		
criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time,		
Response Time; Scheduling algorithms: Pre-emptive and Non-pre-emptive,		
FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and		
EDF.		
Inter-process Communication Critical Section, Race Conditions, Mutual		
Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The		
Producer\ Consumer Problem, Semaphores, Event Counters, Monitors,		
Message Passing, Classical IPC Problems: Reader's & Writer Problem,		
Dinning Philosopher Problem etc.		
Unit III: Deadlocks and Memory Management		12 H
Definition, Necessary and sufficient conditions for Deadlock, Deadlock		
Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection		
and Recovery.		
Basic concept, Logical and Physical address map, Memory allocation:		
Contiguous Memory allocation –Fixed and variable partition–Internal and		
External fragmentation and Compaction; Paging: Principle of operation –		
Page allocation-Hardware support for paging, Protection and sharing,		
Disadvantages of paging. Virtual Memory: Basics of Virtual Memory –		
Hardware and control structures – Locality of reference, Page fault, Working		
Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms:		
Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used		
(NRU) and Least Recently used (LRU).		
Unit IV: I/O and File Management		11 H

I/O devices, Device controllers, Direct memory access Principles of I/O	
Software: Goals of Interrupt handlers, Device drivers, Device independent	
I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling	
algorithms File Management: Concept of File, Access methods, File types,	
File operation, Directory structure, File System structure, Allocation	
methods (contiguous, linked, indexed), Free Space Management (bit vector,	
linked list, grouping), directory implementation (linear list, hash table),	
efficiency and performance. Disk Management: Disk structure, Disk	
scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk	
formatting, Boot-block, Bad blocks	
Linux Case Study	

List of Experiments (Total Hours: 30)

- 1. Installation Process of various operating systems.
- 2. Implementation of CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority.
- 3. Virtualization, Installation of Virtual Machine Software and installation of Operating System on Virtual Machine.
- 4. Commands for files & directories: cd, ls, cp, md, rm, mkdir, rmdir. Creating and viewing files using cat. File comparisons. Disk related commands: checking disk free spaces. Processes in linux, connecting processes with pipes, vbackground processing, managing multiple processes. Background process: changing process priority, scheduling of processes at command, batch commands, kill, ps, who, sleep. Printing commands, grep, fgrep, find, sort, cal, banner, touch, file. File related commands ws, sat, cut, grep.
- 5. Shell Programming: Basic of shell programming, various types of shell, Shell Programming in bash, conditional & looping statement, case statements, parameter passing and arguments, shell variables, shell keywords, creating shell programs for automate system tasks, report printing.
- 6. Implementation of Bankers algorithm for the purpose of deadlock avoidance.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain basic operating system concepts such as overall architecture, system calls user mode and kernel mode.
- 2. Distinguish concepts related to processes, threads, process scheduling, race conditions and critical sections.
- 3. Analyze and apply CPU scheduling algorithms, deadlock detection and prevention algorithms.
- 4. Examine and categorize various memory management techniques like caching, paging, segmentation, virtual memory, and thrashing.
- 5. Design and implement file management system.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Avi Silberschatz, Peter Galvin, Greg Gagne	Operating System Concepts Essentials	Wiley	2014	978- 1118804926
William Stallings	Operating Systems: Internals and Design Principles	Prentice Hall	2018	978- 9352866717

Charles Crowley	Operating System: A Design- oriented Approach	ТМН	2017	978- 0074635513
Gary J. Nutt	Operating Systems: A Modern Perspective	Pearson	1997	978- 0805312959
Maurice Bach	Design of the Unix Operating Systems	Pearson	2015	978- 9332549579

Course Title: IT workshop

Course Contents/syllabus:

| L | T | P/S | SW/FW | TOTAL | CREDIT | UNITS | 0 | 0 | 2 | 0 | 1

List of Experiments

(Total:30 Hours)

- 1. Introduction to Matlab Environment.
- 2. Variables declaration, initialization and usage in Matlab
- 3. Use of various In-build functions in Matlab
- 4. Use of various branching statements in Matlab
- 5. Use of various Looping statements in Matlab.
- 6. Creation & use of functions in Matlab.
- 7. Use of additional Datatypes in Matlab.
- 8. Understanding various methods of plots in Matlab.
- 9. Use of arrays in Matlab.
- 10. Use of Input & output in Matlab.
- 11. Introduction to advanced analysis properties of Matlab
- 12. Introduction to various tools in Matlab like Image processing, neural networks, fuzzy logic etc.

Note: Experiments may be done in Matlab or SciLab

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the simulation environment.
- 2. Use various control statements in Matlab/Sci Lab.
- 3. Create and use functions in Matlab/SciLab
- 4. Understand various types of datatypes inbuild functions of Matlab/SciLab.
- 5. Gain In-sight on various toolboxes of Matlab.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
Stephen J.	MATLAB Programming for	Cengage	2019	978-
Chapman	Engineers	Learning India		9353502874
Amos Gilat	MATLAB: An Introduction	Wiley	2012	978-
	with Applications			8126537204

R. Balaji	Basics of MATLAB Programming	Notion Press	2020	978- 1648926235
Rudra Pratap	Getting Started with MATLAB	Oxford University press	2019	978- 0190091972

<u>Program Structure for B. Tech. CSE</u> <u>Semester IV</u>

Sr. No.	Course Code	Course Title	Type of course		Hours per week		Credits
				L	Т	P	
1		Discrete Mathematics	Basic Science course	4	0	0	4
2		Introduction to Cloud Computing	Core Course	4	0	2	5
		Java Programming	Core Course	3	0	4	5
4		Software Engineering	Core Course	3	0	2	4
5		Fundamentals of IOT and Blockchain	Core Course	3	0	2	4
6		Design and Analysis of Algorithms	Core Course	3	0	2	4
		TOTAL		20	0	12	26
			Total Credits	Min Required: 26 Semester Credits: 26			

^{*6-8} Weeks Industrial/institutional training after 4th Semester

Course Title: Discrete Mathematics

expressions, applications of Boolean Algebra

Course Contents/syllabus:					CREDIT UNITS	
	4	0	0	0	4	
Unit I	Unit I					
Set and set operations, Logic and proof techniques, induction and recursion, relations and their properties, partial orderings, functions, and their properties, sequences, sums, and matrices						
Unit II						
Lattice Theory and Boolean Algebra: Lattices as partially ordered sets, their properties. Lattices and algebraic systems. Sub lattices, direct products, and homomorphism. Boolean Algebra as Lattices, uniqueness of finite Boolean						

SW/FW

TOTAL

Unit III	18 H
Group, subgroups, Permutation groups, normal subgroup, Isomorphism,	
automorphism, homomorphism,	
Unit IV	18 H
Graph Theory: Introduction to graphs, graph terminology, representing graphs and	
graph isomorphism, Euler and Hamiltonian paths, planar graphs, graph colouring and	
introduction to tress, application of trees	

Course Learning Outcomes: On the successful completion of this course the student will be able to

- 1. Construct mathematical arguments using logical connectives and quantifiers.
- 2. Verify the correctness of an argument using symbolic logic and truth tables.
- 3. Construct proofs using direct proof, proof by contradiction, and proof by cases, or mathematical induction.
- 4. Perform operations on discrete structures such as sets, functions, relations, sequences, and groups.
- 5. Understand the basics of graph theory, Lattices, and their applications

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rosen K.	Discrete Mathematics and Its Applications	7 th Edition, Tata McGraw-Hill Education	2011	9780070681880, 0070681880
Tremblay J. P. and Manohar R.	Discrete Mathematical Structures with Applications to Computer Science	Tata McGraw- Hill Education	1997	9780074631133, 9780074631133
Kolman B., Busby R. and Ross S. C.	Discrete Mathematical Structures	6 th Edition, Pearson	2015	9789332549593, 8131755541

Course Title: Introduction to Cloud Computing

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	4	0	2	0	5

	%ge	Teaching
		Hours
Unit I: Introduction	30%	15 H
Definition of cloud, characteristics of cloud, historical developments &		
challenges ahead, the vision of cloud computing, Driving factors towards		
cloud, Comparing grid with utility computing, cloud computing and other		
computing systems, types of workload patterns for the cloud, IT as a service,		
Applications of cloud computing Introduction to virtualization techniques,		
Characteristics of virtualization, Pros and Cons of virtualization Technology,		
Hypervisors, Types of hypervisors, Multitenancy, Application programming		
interfaces (API), Elasticity and scalability.		
Unit II: Cloud Service Models	20%	12 H

Cloud service models, Infrastructure as a service (IaaS) architecture- details and example, Platform as a service (PaaS) architecture- details and example, Software as a service (SaaS) architecture details and example, Comparison		
of cloud service delivery models.		
Unit III: Cloud Deployment	30%	12 H
Introduction to cloud deployment models, Public clouds, Private clouds,		
Hybrid clouds, Community clouds, Migration paths for cloud, Selection		
criteria for cloud deployment.		
Unit IV: Cloud Security	20%	15 H
Understanding security risks, Principal security dangers to cloud computing,		
Internal security breaches, User account and service hijacking, measures to		
reduce cloud security breaches Case Studies: Comparison of existing Cloud		
platforms /Web Services.		

List of Experiments (Total:30 Hours)

- 1. Install VirtualBox/VMware Workstation on different OS.
- 2. Install different operating systems in VMware.
- 3. Simulate a cloud scenario using simulator.
- 4. Implement scheduling algorithms.
- 5. To study cloud security management.
- 6. To study and implementation of identity management
- 7. Case Study Amazon Web Services/Microsoft Azure/Google cloud services.
- 8. Hands on open-source simulator like cloudSim.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the core concepts of the cloud computing paradigm
- 2. Understanding importance of virtualization along with their technologies
- 3. Analyze various cloud computing service
- 4. Analyze various deployment models and apply them to solve problems on the cloud.
- 5. Implementation of various security strategies for different cloud platform.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Raj Kumar Buyya, James Broberg, Andrezei M. Goscinski	Cloud Computing: Principles and Paradigms	Wiley	2013	978- 8126541256
Anthony T. Velte, Toby J. Velte and Robert Elsenpeter	Cloud Computing: A practical Approach			978- 0070683518
Barrie Sosinsky	Cloud Computing Bible	Wiley	2011	978- 0470903568
Judith Hurwitz, Robin Bllor, Marcia Kaufman, Fern Halper	Cloud Computing for dummies	Wiley	2009	978- 8126524877

Rajkumar Buyya, Christian Vecchiola,	Mastering Cloud Computing	Mc Graw Hill	2017	978- 1259029950
S.Thamarai Selvi				

Course Title: Java Programming

		P/S	S	W/FW	TOTAL CREDIT	
Course Contents/syllabus:						UNITS
	3	0	4		0	5
						Teaching
Unit I: Introduction						Hours 12 H
Java Programming Fundamentals: Introduction to Ja	va S	tage	for Iax	79		12 11
Origin, Challenges of Java, Java Features, Java Pro						
Object Oriented Programming.	51 4111	Den	лорине	11,		
Java Essentials: Elements of Java Program, Java API, Va	ariabl	es and	l Litera	ls,		
Primitive Data Types, The String class, Variables, C						
Scope of Variables & Blocks, Types of Comment in Jav	a.					
Unit II: Control Structure & Object Oriented Java						11 H
Control Statements: Decision making statements (if, if-e						
ladder, switch, conditional operator), Looping statemer			do-whi	le,		
for, nested loops), Jumping statements (Break and Cont						
Classes and Objects: Basic concepts of OOPS, Cl						
Modifiers, Passing arguments, Constructors, Overlo				rs,		
Overloaded Operators, Static Class Members, Garbage Inheritance: Basics of inheritance, Inheriting and Overloaded Operators, Static Class Members, Garbage						
methods, Calling Superclass Constructor, Polymorphism						
Final Class.	ш, д	Jstrac	t Classe	<i>-</i> 3,		
Unit III: Arrays, Interfaces & Packages						12 H
Arrays and Strings: Introduction to array, Processing	ng A	rray	Conten	ts,		
Passing array as argument, Returning array from metho						
2D arrays, Array with three or more dimensions.	String	g cla	ss, stri	ng		
concatenation, Comparing strings, Substring, Difference						
String Buffer class, String Tokenizer class. Interface at		_				
of interface, Multiple Interfaces, Multiple Inheritance						
Multilevel Interface, Packages, Create and Access Pac	kages	s, Stat	ic Impo	ort		
and Package Class, Access Specifiers.						11 H
Unit IV: Exceptions, Multithreading & Applets Exception Handling: Introduction True and Cataly Placete Multiple Cataly						111 H
Exception Handling: Introduction, Try and Catch Blocks, Multiple Catch,						
Nested Try, Finally, Throw Statement, Built-In Exceptions Multithreading: Introduction, Threads in Java, Thread Creation, Lifecycle of						
Thread, Joining a Thread, Thread Scheduler, Thread						
Synchronization. Applets: Introduction, Applet Class,						
Graphics in Applet, Event-Handling.			-			

List of Experiments (Total:60 Hours)

- 1. Write a program to perform following operations on two numbers input by the user:
- 1) Addition 2) subtraction 3) multiplication 4) division
 - 2. Write a Java program to print result of the following operations.

(35+8) % 6 24 + -5*3 / 7 15 + 18 / 3 * 2 - 9 % 3

- 3. Write a Java program to compute area of: 1)Circle 2) rectangle 3) triangle 4) square
- 4. Write a program to convert temperature from Fahrenheit to Celsius degree using Java.
- 5. Write a program through Java that reads a number in inches, converts it to meters.
- 6. Write a program to convert minutes into a number of years and days.
- 7. Write a Java program that prints current time in GMT.
- 8. Design a program in Java to solve quadratic equations using if, if else
- 9. Write a Java program to determine greatest number of three numbers.
- 10. Write program that gets a number from the user and generates an integer between 1 and 7 subsequently should display the name of the weekday as per that number.
- 11. Construct a Java program to find the number of days in a month.
- 12. Write a program to sum values of an Single Dimensional array.
- 13. Design & execute a program in Java to sort a numeric array and a string array.
- 14. Calculate the average value of array elements through Java Program.
- 15. Write a Java program to test if an array contains a specific value.
- 16. Find the index of an array element by writing a program in Java.
- 17. Write a Java program to remove a specific element from an array.
- 18. Design a program to copy an array by iterating the array.
- 19. Write a Java program to insert an element (on a specific position) into Multidimensional array.
- 20. Write a program to perform following operations on strings:
 - i. Compare two strings.
 - ii. Count string length.
 - iii. Convert upper case to lower case & vice versa.
 - iv. Concatenate two strings.
 - v. Print a substring.
- 21. Developed Program & design a method to find the smallest number among three numbers.
- 22. Compute the average of three numbers through a Java Program.
- 23. Write a Program & design a method to count all vowels in a string.
- 24. Write a Java method to count all words in a string.
- 25. Write a method in Java program to count all words in a string.
- 26. Write a Java program to handle following exceptions:
 - Divide by Zero Exception.
 - Array Index Out of B bound Exception.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Define various Object Oriented concepts in Java Programming.
- 2. Compare different data types in java.
- 3. Differentiate between built-in and user defined functions/methods, interfaces and packages etc.
 - 4. Outline the importance of exception handling in programs.
 - 5. Explain advanced concepts like multithreading, applet used in java

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Balagurusamy	Programming with Java: A Primer, 6 th Ed.	ТМН	2019	978- 9353162344
Sagayaraja, Denis, Karthik, Gajalakshmi	Java Programming for Core and Advanced Learners,	The Orient Blackswan	2018	978- 9386235329
Herbert Schildt and Dale Skrien	Java Fundamentals, A Comprehensive Introduction	McGraw Hill	2017	978- 1259006593
H. Schildt	Java, The complete Reference, 11	ТМН	2020	978- 9390491629

Course Title: Software Engineering

Course Contents/syllabus:	L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4
				1	

3 0 2	U	
		Teaching
		Hours
Unit I: Introduction		12 H
Evolution and impact of Software engineering, software life cycle models:		
Waterfall, prototyping, Evolutionary, and Spiral models. Feasibility study,		
Functional and Non-functional requirements, Requirements gathering,		
Requirements analysis and specification		
Unit II: Software Design		11 H
Basic issues in software design, modularity, cohesion, coupling and layering,		
function-oriented software design: DFD and Structure chart, object		
modeling using UML, Object-oriented software development, user interface		
design. Coding standards and Code review techniques		
Unit III: Software Project Management		12 H
Software project management, Project planning and control, cost estimation,		
project scheduling using PERT and GANTT charts, cost-time relations:		
Rayleigh-Norden results, quality management		
Unit IV: Software Quality		11 H
ISO and SEI CMMI, PSP and Six Sigma. Computer aided software		
engineering, software maintenance, software reuse, Component-based		
software development.		

List of Experiments (Total:30 Hours)

- 1. Study and usage of OpenProj or similar software to draft a project plan
- 2. Study and usage of OpenProj or similar software to track the progress of a project
- 3. Preparation of Software Requirement Specification Document, Design Documents and Testing Phase
- 4. Related documents for some problems
- 5. Preparation of Software Configuration Management and Risk Management related documents
- 6. Study and usage of any Design phase CASE tool

- 7. To perform unit testing and integration testing
- 8. To perform various white box and black box testing techniques
- 9. Testing of a web site

Suggested Tools - Visual Paradigm, Rational Software Architect. Visio, Argo UML, Rational

Application Developer etc. platforms.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Students should be able to identify the need for engineering approach to software development and various processes of requirements analysis for software engineering problems.
- 2. Analyse various software engineering models and apply methods for design and development of software projects.
- 3. Work with various techniques, metrics and strategies for Testing software projects.
- 4. Identify and apply the principles, processes and main knowledge areas for Software Project Management
- 5. Proficiently apply standards, CASE tools and techniques for engineering software projects

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Roger Pressman	"Software Engineering: A Practitioners Approach	Mc-Graw Hill	2009	978- 0071267823
Sommerville	Software Engineering	Pearson	2017	978- 9332582699
Pankaj Jalote	An integrated approach to Software Engineering	Narosa	2005	978- 8173197024
Rajib Mall	Fundamentals of Software Engineering	РНІ	2018	978- 9388028028
Watts Humphrey	Managing software process	Pearson	2002	978- 8177583304

Course Title: Fundamentals of IOT & Blockchain

Course Contents/syllabus:		T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4
	•				Teaching
					Hours
Unit I: Introduction					12 H

IoT definition, IoT conceptual and architectural framework, Physical and logical design of IoT, IoT applications, M2M communications, IoT vs M2M, IoT vs WoT, IoT reference architecture, Introduction to Blockchain and	
Distributed Ledger, Blockchain Properties, Types of Blockchain,	
Blockchain Platforms, Applications of Blockchain	
Unit II: IoT Sensors, Architecture and protocols	11 H
Basic components and challenges of a sensor node, , Sensor resolution, Sensor classes, Actuator: Actuator types, IoT Components, Functional components of IoT, IoT service oriented architecture, 6LowPAN, IEEE 802.15.4, ZigBee and its types, RFID, Bluetooth, Wireless Sensor Networks, IoT Protocols.	
Unit III: Bitcoin Platform and Architectures, Smart Contract and Ethereum Platform	11 H
Distributed peer-to-peer network, nodes, consensus protocol, mining: Type, Process, Bitcoin Crypto: Hashing, Digital Signatures, Wallet and Transactions in Bitcoin, Introduction Ethereum, Architecture, Smart Contracts, Elements of Smart Contracts, Ethereum Operations, Incentive Model, Transactions in Ethereum, Introduction Solidity	
Unit IV: Consensus Protocols and Security Issues	11 H
Trust Essentials: Decentralized Systems, Consensus Protocols: Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated Proof-of-Stake (DPoS), Proof-of-Burn (PoB), Byzantine Fault Tolerance (BFT), Practical Byzantine Fault Tolerance (PBFT), Proof-of-Activity (PoA), Proof of Elapsed Time (PoET). Blockchain Security.	

List of Experiments (Total:30 Hours)

- 1. Displaying Time over 4-Digit 7-Segment Display using Raspberry Pi.
- 2. Raspberry Pi Based Oscilloscope 3. Controlling Raspberry Pi with WhatsApp.
- 3. Setting up Wireless Access Point using Raspberry Pi
- 4. Fingerprint Sensor interfacing with Raspberry Pi
- 5. Raspberry Pi GPS Module Interfacing.
- 6. IoT based Web Controlled Home Automation using Raspberry Pi
- 7. Visitor Monitoring with Raspberry Pi and Pi Camera.
- 8. Interfacing Raspberry Pi with RFID.
- 9. Building Google Assistant with Raspberry Pi.
- 10. Implement Smart Contracts in Ethereum using Solidity.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand Internet of Things and its hardware and software components
- 2. Interface I/O devices, sensors & communication modules
- 3. Analyze data from various sources in real-time and take necessary actions in an intelligent fashion
- 4. Introduce and define Blockchain, explain Blockchain types, Platforms, Components and Its Applications.
- 5. Discuss the innovation of the Smart Contract, Ethereum Blockchain, review its protocol, and explore the payment model for code execution in solidity

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Pethuru Raj and Anupama C. Raman	The Internet of Things: Enabling Technologies, Platforms, and Use Cases	CRC Press	2017	978- 1498761284
Honbu Zhou	The Internet of Things in the Cloud: A Middleware Perspective	CRC Press	2012	978- 1439892992
Debjani Mohanty	Blockchain from Concept to Execution: Bitcoin, Ethereum, Quorum, Ripple, R3 Corda, Hyperledger Fabric/Saw Tooth/Indy, Multi Chain, IOTA, CoCo	BPB Publications	2018	978- 1439892992

Course Title: Design and Analysis of Algorithms

Course Contents/syllabus:		L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
		3	0	4	0	5
						Teaching

	U	3
		Teaching Hours
Unit I: Introduction		12 H
Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem.		
Unit II: Algorithmic Strategies		11 H
Brute-Force, Greedy, Dynamic Programming, Branch- and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving: Bin Packing, Knap Sack, TSP.		
Unit III: Graphs & Trees		12 H
Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.		
Unit IV: Tractable and In-Tractable problems		11 H
Computability of Algorithms, Computability classes – P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques. Approximation algorithms, Randomized algorithms, Heuristics and their characteristics.		

List of Experiments (Total: 30 Hours)

- 1. Code and analyze solutions to following problem with given strategies:
 - i. Knap Sack using greedy approach
 - ii. Knap Sack using dynamic approach
- 2. Code and analyze to find an optimal solution to matrix chain multiplication using dynamic programming.
- 3. Code and analyze to find an optimal solution to TSP using dynamic programming.
- 4. Implementing an application of DFS such as:

- i. to find the topological sort of a directed acyclic graph
- ii. to find a path from source to goal in a maze.
- 5. Implement an application of BFS such as:
 - i. to find connected components of an undirected graph
 - ii. to check whether a given graph is bipartite.
- 6. Code and analyze to find shortest paths in a graph with positive edge weights using Dijkstra's algorithm.
- 7. Code and analyze to find shortest paths in a graph with arbitrary edge weights using Bellman-Ford algorithm.
- 8. Code and analyze to find shortest paths in a graph with arbitrary edge weights using Flyods' algorithm.
- 9. Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Prims' algorithm
- 10. Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Kruskals' algorithm.
- 11. Coding any real world problem or TSP algorithm using any heuristic technique.

- 1. For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms;
- 2. Explain when an algorithmic design situation calls for which design paradigm (greedy/divide and conquer/backtrack etc.);
- 3. Explain model for a given engineering problem, using tree or graph, and writethe corresponding algorithm to solve the problems;
- 4. Demonstrate the ways to analyze approximation/randomized algorithms (expected running time, probability of error); &
- 5. Examine the necessity for NP class based problems and explain the use of heuristic techniques.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein	Introduction to Algorithms	РНІ	2010	978- 8120340077
Adam Drozdek	Data Structures and Algorithms in C++	Cengage	2013	978- 8131521267
E. Horowitz, Sartaj Saini	Fundamentals of Computer Algorithms	Galgotia Publications	1999	978- 817515257
Jon Kleinberg and Éva Tardos	Algorithm Design	Pearson	2013	978- 9332518643

<u>Program Structure for B. Tech. CSE</u> <u>Semester V</u>

Sr. No.	Course Code	Course Title	Type of course	Hours per week			Credits
				L	Т	P	
1		Database Management System	Core Course	3	0	4	5
2		Formal Language and Automata Theory	Core Course	3	0	0	3
3		Foundations of Artificial Intelligence	Core Course	3	0	2	4
4		Specialization -I	Specialization Electives	3	0	2	4
5		**Open Elective-I	Inter-Disciplinary Elective	3	0	0	3
6		Domain Elective-I	Domain Elective Course	3	0	0	3
7		*Industrial Training	Non- Teaching Course	0	0	0	2
		TOTAL		18	0	8	24
			Total Credits	Min Required: 24 Semester Credits: 24			

^{**} Open Elective to be taken from the subjects offered by other Schools/departments of AUP.

Domain Elective I

Information System Design and Implementation IPR & Cyber Laws
Cyber Security

Course Title: Database Management Systems

	L	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT UNITS
	3	0	4	0	5

			1
		%ge	Teaching
			Hours
Unit I: Introduction		25%	14 H
Data Abstraction, Data Independence, Data Definition Language (DDL),		
Data Manipulation Language (DML). Data models: Entity-relation	onship		
model, network model, relational and object-oriented Data models, in	tegrity		
constraints, data manipulation operations.			
Unit II: Relational Query Languages		25%	13 H
The relational model, Keys, Relational algebra, Domain relational ca	lculus,		
Tuple relational calculus: Domain and data dependency, SQL fundam	entals,		
Fundamental operations, Additional operations, Integrity, Triggers, V			
Unit III: Normalization		25%	13 H
Functional Dependency, Armstrong's axioms, Normalization	using		
Functional Dependency, Multivalued dependency and Join depen	dency.		
First Normal form 2 nd Normal form, 3 rd Normal form, Boyce Codd N	Vormal		
form, 4th Normal form 5 th Normal form			
Unit IV: Concurrency control		25%	14 H
Concurrency control, ACID property, Serializability of scheduling, Lo	ocking		
and timestamp-based schedulers, multi-version and optimistic Concu	rrency		
Control schemes, Database recovery Database Security Authentic	cation,		
Authorization, and access control.			
SQL injection.			

List of Experiments (Total:60 Hours)

- 1. Introduction to SQL and installation of SQL Server / Oracle.
- 2. Data Types, Creating Tables, Retrieval of Rows using Select Statement,
- 3. Conditional Retrieval of Rows, Alter and Drop Statements.
- 4. Working with Null Value, Ordering the Result of a Query.
- 5. Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements.
- 6. Set Operators, Nested Queries, Joins, Sequences.
- 7. Views, Indexes, Database Security and Privileges: Grant and Revoke Commands, Commit and Rollback Commands.
- 8. PL/SQL Architecture, Assignments and Expressions, Writing PL/SQL Code Referencing Non-SQL parameters.
- 9. Stored Procedures and Exception Handling.
- 10. Triggers and Cursor Management in PL/SQL

- 1. Understand the various database models.
- 2. Construct the SQL queries for DDL and DML.
- 3. Normalize the tables in various normal forms.
- 4. Design the schedules of transactions with control on concurrency.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Abraham Silberschatz, Henry F. Korth, S. Sudarshan	Database System Concepts	Mc-Graw Hill	2021	978- 9390727506
J. D. Ullman	Principles of Database and Knowledge–Base Systems	Computer Science Press	1989	978- 0716781622
R. Elmasri and S. Navathe	Fundamentals of Database Systems	Pearson	2017	978- 9332582705
Serge Abiteboul, Richard Hull, Victor Vianu	Foundations of Databases	Pearson	1994	978- 0201537710

Course Title: Formal Languages and Automata Theory

Course Contents/syllabus:	L 3	T 0	P/S 0	SW/FW		TOTAL CREDIT UNITS 3
Unit I: Introduction						11 H
Alphabet, languages and grammars, productions and dhierarchy of languages.	eriva	tion,	Choms	ky		
Unit II: Regular Expressions and Languages						12 H
Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata						
Unit III: Context Free and Context Sensitive Gramm	nar					12 H
Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic pushdown automata, closure properties of CFLs Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG						
Unit IV: Turing Machines						09 H

The basic model for Turing machines (TM), Turing recognizable		
(recursively enumerable) and Turing-decidable (recursive) languages and		
their closure properties, variants of Turing machines, nondeterministic TMs		
and equivalence with deterministic TMs, unrestricted grammars and		ı
equivalence with Turing machines, TMs as enumerators.	i	

- 1. Write a formal notation for strings, languages and machines.
- 2. Design finite automata to accept a set of strings of a language.
- 3. Design context free grammars to generate strings of context free language
- 4. Design context sensitive grammars.
- 5. Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman	Introduction to Automata Theory, Languages, and Computation	Pearson	2008	978- 8131720479
Harry R. Lewis and Christos H. Papadimitriou	Elements of the Theory of Computation	Pearson	2015	978- 9332549890
Dexter C. Kozen	Automata and Computability, Undergraduate Texts in Computer Science	Springer	2007	978- 0387949079
Michael Sipser	Introduction to the Theory of Computation	Cengage	2014	978- 8131525296
John Martin	Introduction to Languages and The Theory of Computation	ТМН	2007	978- 0070660489

Course Title: Foundations of Artificial Intelligence

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4
					Teaching

	Teaching Hours
Unit I: Introduction	12 H
Concept of AI, history, current status, scope, agents, environments, Problem Formulations, Review of tree and graph structures, State space representation, Search graph and Search tree	
Unit II: Search Algorithms	11 H

Random search, Search with closed and open list, Depth first and Breadth first search, Heuristic search, Best first search, A* algorithm, Game Search	
Unit III: Probabilistic Reasoning	12 H
Probability, conditional probability, Bayes Rule, Bayesian Networks-representation, construction and inference, temporal model, hidden Markov model. MDP formulation, utility theory, utility functions, value iteration, policy iteration and partially observable MDPs.	
Unit IV: Reinforcement Learning	10 H
Passive reinforcement learning, direct utility estimation, adaptive dynamic programming, temporal difference learning, active reinforcement learning-Q learning.	

List of Experiments (Total:30 Hours)

- 1. Write a program to conduct uninformed and informed search.
- 2. Write a program to conduct game search.
- 3. Write a program to construct a Bayesian network from given data.
- 4. Write a program to infer from the Bayesian network.
- 5. Write a program to run value and policy iteration in a grid world.
- **6.** Write a program to do reinforcement learning in a grid world

Any Other Program as per syllabus

Course Learning Outcomes: After studying this course students will be able to:

- 1. Build intelligent agents for search and games
- 2. Solve AI problems by learning various algorithms and strategies
- 3. Understand probability as a tool to handle uncertainty
- 4. Learning optimization and inference algorithms for model learning
- 5. Design and develop programs for an reinforcement agent to learn and act in a structured environment

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Stuart Russell and Peter Norvig	Artificial Intelligence: A Modern Approach	Pearson	2010	978- 0136042594
Elaine Rich and Kevin Knight	Artificial Intelligence	Tata Mc Graw Hill	1991	978- 0070522633
Trivedi, M.C.	A Classical Approach to Artificial Intelligence	Khanna book Publication	2018	978- 8190698894
Saroj Kaushik	Artificial Intelligence	Cengage Learning	2011	978- 8131510995
David Poole and Alan Mackworth	Artificial Intelligence: Foundations for Computational Agents	Cambridge University Press	2017	978- 1107195394

Course Title: Statistical Computing Techniques using R (Specialization AI & ML)

Course Contents/syllabus:	L	Т	P/S	S	W/FW	TOTAL CREDIT UNITS
	3	0	2		0	4
					%ge	Teaching Hours
Unit I: INTRODUCTION					20%	10 H
General introduction to computing, Using R as a calcula	tor, N	lumbe	ers, wor	ds		1011
and logicals; missing values (NA), Vectors and their						
length, type), System- and user-defined objects, Acce	essing	g data	(data()).		
Data in the system and date outside the system (read.tab	ole, so	can)				
Unit II. Cyanhias in D and control statements					30%	15H
Unit II: Graphics in R and control statements First steps in graphics, the basics of R syntax, The R v	vorks	naca	Matric	200	30%	1511
and lists, Subsetting System-defined functions; the help						
warnings; coherence of the workspace Data input and o	-					
other software packages, Writing your own cod						
programming practice, R syntax further steps T						
brackets; =, == and <_						
Apply-type functions Compiling and applying function	ons I	Ocun	nentatic	n		
Conditional statements Loops and iterations)II3 L	ocui		,,,		
Unit III: Exploratory and Statistical Analysis in R					25%	12 H
I Exploratory data analysis, Range, summary, mean, v	arian	ce m	edian s	ed.	23 /0	12 11
histogram, box plot, scatterplot Probability distribution						
generation Distributions, the practice of simulation	15, 10	unuon	ii iidiiic	<i>,</i> C1		
generation Bistributions, the practice of simulation						
Statistical functions in R, Statistical inference, conti						
square goodness of fit, regression, generalized linear		dels,	advanc	ed		
modelling methods, the bootstrap method to compute s.e.f						
Unit IV: Big Data Analysis					25%	13 H
Graphics; beyond the basics Graphics and tables, v	orki	ng w	ith larg	ger		
datasets, Principles of exploratory data analysis (big						
frames in R, Defining your own classes and operations I	Mode	ls and	l metho	ds		
in R, Customizing the user's environment						

List of Experiments (Total:30 Hours)

- 1. Familiarization of environments in R.
- 2. Perform simple arithmetic's using R.
- 3. Perform basic R functions.
- 4. Use various graphical techniques in EDA.
- 5. Create different charts for visualization of given set of data.
- 6. Find the mean, median, standard deviation and quartiles of a set of observations.
- 7. Find the Skewness and Kurtosis of a given dataset distribution.
- 8. Given the scenario, implement the Bayes rule by finding the posterior probability.

- 9. Find the mass function of a binomial distribution with n=20,p=0.4n=20,p=0.4. Also draw the graphs of the mass function and cumulative distribution function.
- 10. Generate and draw the cdf and pdf of a normal distribution with mean=10 and standard deviation=3. Use values of xx from 0 to 20 in intervals of 1.
- 11. Construct a scatter plot to investigate the relationship between two variables.
- 12. Perform the Z- test for single proportion, single mean etc.
- 13. Calculate the regression coefficient and obtain the lines of regression for the given data.
- 14. Compute confidence intervals for the mean when the standard deviation is known.
- 15. Perform F test
- 16. Perform Chi-Square test.

- 1. To use a fundamental tool for computing in the practice of quantitative analytical methods
- 2. Programming, data handling, transformations, subsetting, exploratory data analysis, probability distributions and simulations, regression and linear models, summarising data.
- 3. To handle large data sets, effective graphics.
- 4. Modern concepts of statistics based on simulations and writing a report of a quantitative analysis.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Matloff, N.	The Art of R Programming: A Tour of Statistical Software Design	No Starch Press	2011	978-1593273842
Philip H. Pollock	An R Companion to Political Analysis	CQ Press	2017	978-1506368849
Chihara, L. and Hesterberg, T.	Mathematical statistics with resampling and R	Wiley	2011	
Lander, J. P.	R for Everyone: Advanced Analytics and Graphics	978- 0134546926	2017	978-0134546926

Course Title: Virtualization and Cloud Architecture (Specialization: Cloud Computing)

Course Contents/syllabus:		T	P/S	SW/FW	TOTAL CREDIT UNITS
		0	2	0	4
					Teaching Hours
Unit I: Introduction to Virtualization				11 H	

Physical and virtual machines, Traditional and virtual computing, understanding virtualization, Need and Applications of virtualization, Pros and Cons of Virtualization. Limitations, Simulations and Emulations, Challenges in Virtualized environment, tools and technologies in virtualized environments.	
Unit II: Types of Virtualizations:	12 H
Various forms of virtualization: Desktop, Application, Server, Hardware, Storage, Memory and I/O virtualization. Full Virtualization, Para Virtualization, Hardware Assisted Virtualization, Implementation of Hardware Assisted Virtualization, Algorithms for implementation of Virtualization, Challenges.	
Unit III: Cloud Architecture- Layers and Models:	12 H
emt III. Cloud All'emtecture Layers and Wodels.	12 11
Layers in cloud architecture, Software as a Service (SaaS), features of SaaS and benefits, Platform as a Service (PaaS), features of PaaS and benefits, Infrastructure as a Service (IaaS), features of IaaS and benefits, Service providers, challenges and risks in cloud adoption. The conceptual reference model, Service Deployment, Cloud service management.	12 11
Layers in cloud architecture, Software as a Service (SaaS), features of SaaS and benefits, Platform as a Service (PaaS), features of PaaS and benefits, Infrastructure as a Service (IaaS), features of IaaS and benefits, Service providers, challenges and risks in cloud adoption. The conceptual reference	10 H

List of Experiments (Total:30 Hours)

- 1. Installation of Ubuntu, CentOS on VMware.
- 2. Exercise on KVM on CentOS
- 3. Introduction and simulation with packet tracer
- 4. Exercise on installation of VMware ESXi Server on VMware.
- 5. Creating and assigning instances using ESXi server on VMware
- 6. Introduction to AWS Identity and Access Management (IAM).
- 7. Deploy a Web Application on AWS
- 8. Implementing a Serverless Architecture with AWS Managed Services
- 9. Create and configure content delivery network (CDN).

Course Learning Outcomes: After studying this course students will be able to:

- 1. Apply the fundamental and essential concepts of Cloud Computing in deploying web applications.
- 2. Analyze the various cloud service providers on the basis of requirements and constraints.
- 3. Implement the fundamental concepts of cloud storage and demonstrate their use in storage systems such as Microsoft Azure.
- 4. Design and implement the concept of traffic manager and perform load balancing in cloud environment
- 5. Simulate concepts of virtualization and its migration over the cloud.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Gautam Shroff	Enterprise Cloud Computing Technology Architecture Applications	Cambridge University Press;	2010	978- 0521137355

Anthony T.Velte, Toby J. Velte Robert Elsenpeter	Cloud computing a practical approach	TATA McGraw- Hill	2009	978- 0071626941
Lee Chao	Virtualization and Private Cloud with VMware Cloud Suite	Auerbach Publications	2016	978- 1498784320
Rajkumar Buyya, James Broberg, Andrzej M. Goscinski	Cloud Computing: Principles and Paradigms	Wiley	2011	978- 0470887998

Course Title: Secure Communication and Cryptography (Specialization: Cyber Security)

Course Contents/syllabus:	L	T	P/S	SV	W/FW	TOTAL CREDIT UNITS
	3	0	2		0	4
						Teaching Hours
Unit I: Introduction:						11 H
Introduction on security, security goals, targets and types of attacks: Passive attack, active attack, attacks on confidentiality, attacks on integrity and availability, Security services and mechanisms.						
Unit II: - Block Cipher and Data Encryption Standa	rds:					12 H
Block Cipher Principles, Data Encryption Standards, the Strength of DES, Differential and Linear Crypt Analysis, Block Cipher Design Principles,				-		
Evaluation Criteria for AES, the AES Cipher.						10 77
Unit III: Public Key Cryptography And RSA:						12 H
Principles Public key crypto Systems, Diffie Hellman Key Exchange, the RSA algorithm, Key Management, Distribution of public key, public key certificates, Distribution of secret keys, Diffie Hellman key exchange – Man-in-the Middle Attack				y		
Unit IV: Message Authentication and Hash Functions:					10 H	
Authentication Requirement, Authentication Fu Authentication Code, Hash Function, Security of H MACs, Hash Algorithms - SHA, One-way hash fu applications, Intrusion Detection Systems Overview	lash	Funct		d		

List of Experiments (Total:30 Hours)

- 1. Program to implement Ceaser Cipher
- 2. Program to implement Playfair Cipher with key ldrp
- 3. Program to implement polyalphabetic Cipher
- 4. Program to implement AutoKey Cipher5. Program to implement Hill Cipher.
- 6. Program to implement Advanced Columner Transposition technique
- 7. Program to implement Simple RSA Algorithm with small numbers
- 8. Program to implement Euclidean Algorithm

- Understand cryptography and network security concepts and application
 Apply security principles to system design.
- 3. Identify and investigate network security threat.
- 4. Analyze and design network security protocols
- 5. Conduct research in network security

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Douglas R. Stinson	Cryptography: Theory and Practice	CRC Press	2018	978-1138197015
William Stallings	Network Security Essentials: Applications and Standards	Prentice Hall	2017	978-9332585225
Wenbo Mao	Modern Cryptography: Theory and Practice	Pearson	2008	978-8131702123
William Stallings	Cryptography And Network Security Principles and Practice	Pearson Education	2017	978-9332585225

Course Title: Statistical Computing Techniques using R (Specialization: Data Science)

L T P/S SW/FW TOTAL

	_	_	175	5 1171	``	CREDIT
Course Contents/syllabus:						UNITS
	3	0	2	0		1
	3	U	4			4 T 1:
				%g	e	Teaching
						Hours
Unit I: INTRODUCTION				20	%	10 H
General introduction to computing, Using R as a calculate	tor, N	lumbe	ers, wor	ds		
and logicals; missing values (NA), Vectors and their	r attr	ibutes	s (name	es,		
length, type), System- and user-defined objects, Acce	essing	g data	(data()).		
Data in the system and date outside the system (read.tab	•	-	` `	//		
,	,					
Unit II: Graphics in R and control statements				30	%	15H
First steps in graphics, the basics of R syntax, The R v	vorks	space,	Matric	es		
and lists, Subsetting System-defined functions; the help	syst	em, E	Errors a	nd		
warnings; coherence of the workspace Data input and or	•					
other software packages, Writing your own code	•					
programming practice, R syntax further steps Tl			•			
brackets; =, == and <_	го р	ui Ciiti	ieses u	110		
orackets, -, and _						
Apply-type functions Compiling and applying function	ons T	Ocum	nentatio	on		
Conditional statements Loops and iterations	,,,,	- o o un		,,,,		
Conditional statements Loops and iterations						
Unit III: Exploratory and Statistical Analysis in R				25	3%	12 H

I Exploratory data analysis, Range, summary, mean, variance, median, sd, histogram, box plot, scatterplot Probability distributions, Random number generation Distributions, the practice of simulation		
Statistical functions in R, Statistical inference, contingency tables, chi- square goodness of fit, regression, generalized linear models, advanced modelling methods, the bootstrap method to compute s.e.f		
Unit IV: Big Data Analysis	25%	13 H
Graphics; beyond the basics Graphics and tables, working with larger datasets, Principles of exploratory data analysis (big data analysis) Data frames in R, Defining your own classes and operations Models and methods in R, Customizing the user's environment		

List of Experiments (Total:30 Hours)

- 1. Familiarization of environments in R.
- 2. Perform simple arithmetic's using R.
- 3. Perform basic R functions.
- 4. Use various graphical techniques in EDA.
- 5. Create different charts for visualization of given set of data.
- 6. Find the mean, median, standard deviation and quartiles of a set of observations.
- 7. Find the Skewness and Kurtosis of a given dataset distribution.
- 8. Given the scenario, implement the Bayes rule by finding the posterior probability.
- 9. Find the mass function of a binomial distribution with n=20,p=0.4n=20,p=0.4. Also draw the graphs of the mass function and cumulative distribution function.
- 10. Generate and draw the cdf and pdf of a normal distribution with mean=10 and standard deviation=3. Use values of xx from 0 to 20 in intervals of 1.
- 11. Construct a scatter plot to investigate the relationship between two variables.
- 12. Perform the Z- test for single proportion, single mean etc.
- 13. Calculate the regression coefficient and obtain the lines of regression for the given data.
- 14. Compute confidence intervals for the mean when the standard deviation is known.
- 15. Perform F test
- 16. Perform Chi-Square test.

Course Learning Outcomes: After studying this course students will be able to:

- 1. To use a fundamental tool for computing in the practice of quantitative analytical methods
- 2. Programming, data handling, transformations, subsetting, exploratory data analysis, probability distributions and simulations, regression and linear models, summarising data.
- 3. To handle large data sets, effective graphics.
- 4. Modern concepts of statistics based on simulations and writing a report of a quantitative analysis.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
Matloff, N.	The Art of R Programming: A Tour of Statistical Software Design	No Starch Press	2011	978-1593273842

Philip H. Pollock	An R Companion to Political Analysis	CQ Press	2017	978-1506368849
Chihara, L. and Hesterberg, T.	Mathematical statistics with resampling and R	Wiley	2011	
Lander, J. P.	R for Everyone: Advanced Analytics and Graphics	978- 0134546926	2017	978-0134546926

Course Title: IOT Security (Specialization: IOT & Blockchain)

	L	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT
Course Contents/synabus.					UNITS
	3	0	2	0	4

	%ge	Teaching Hours
Unit I: IOT Architecture	25%	12 H
IoT-Architecture, Functional-Architecture, Layered model, Phases of IoT		
system, Internet of Things Attack surface, Applied Physical Attacks-Recon		
and Passive Analysis, Recognizing and communicating hardware impact,		
Sourcing documentation and tools, Reading datasheets and inferring system		
functionality		
Unit II: Threat Modeling and System Analysis	25%	13 H
Threat Modeling and System Analysis, Threat modeling when hardware is		
in scope, Dynamic analysis, analyzing interconnects, Analyzing an unknown		
protocol, Firmware vulnerability analysis and exploitation. Static vs		
Dynamic analysis and tools, Dynamic analysis in-circuit vs emulator,		
Tooling for dynamic analysis.		
Unit III: Trust and Security	25%	12 H
Trust and security from a device perspective, Secure key storage, Trust and		
security from a network perspective, PKI Architecture Components, A		
Public Key Reference Infrastructure for the Iot.		
Unit IV: Complex Systems	25%	13 H
Characterizing Complex Systems: Wireless networks, biological networks,		
social networks, Economic networks, Computer networks. Computational		
Tools for Complex Systems: Signal processing tools, Network science tools,		
Controllability and observability of networks, Network tomography,		
Lessons from communications engineering.		

List of Experiments (Total:30 Hours)

Perform at least 10 exercises related to cyber-attacks on a simulator. Faculty may choose the simulator and exercises as per syllabus contents market requirements.

- 1. Understanding IoT Architectures and Attack surface.
- 2. Learn Recon and Passive Analysis on Hardware Layer.
- 3. Learn Threat Modelling and System Analysis.
- 4. Learn Firmware Vulnerability Analysis and Exploitation.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Fei HU	Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations	CRC Press	2020	
Russell, Brian and Drew Van Duren BorkoFurht	Practical Internet of Things Security	Packt Publishing	2016	978-1785889639
Ollie Whitehouse	Security of Things: An Implementers' Guide to Cyber-Security for Internet of Things Devices and Beyond	NCC Group	2014	

Course Title: Introduction to Quantum Computing (Specialization: Quantum Computing)

Course Contents/syllabus:

L T P/S SW/FW TOTAL CREDIT UNITS

3 0 2 0 4

	Teaching Hours
Unit I: Introduction	11 H
Basics of Quantum Computing, Perspective Qubits, quantum gates Hilbert spaces, Dirac's notation Entanglement, EPR paradox, Bell's inequality, teleportation Postulates of quantum mechanics, super dense coding.	
Unit II: Quantum Correlations	12 H
Elementary quantum mechanics, linear algebra for quantum mechanics, Quantum states in Hilbert space, The Bloch sphere, Density operators, generalized measurements, no-cloning theorem. Bell inequalities and entanglement, Schmidt decomposition.	
Unit III: Quantum Cryptography	12 H

Quantum cryptography: quantum key distribution, Classic McEliece, HQC, Applications of code based and lattice-based cryptography, superdense coding, teleportation	
Unit IV: Quantum Gates and Algorithm	10 H
Universal set of gates, quantum circuits, Solovay-Kitaev theorem, Deutsch-	
Jozsa algorithm, factoring Programming a quantum computer: The IBMQ,	
coding a quantum computer using a simulator to carry out basic quantum	
measurement and state analysis.	

List of Experiments (Total:30 Hours)

- 1. Implement and understand quantum gates.
- 2. Learn how information can be encrypted and sent using EPR paradox.
- 3. Implement the linear algebra for quantum mechanics.
- 4. Encrypt Transmit, and Decrypt a Secret Message.
- 5. Examine how an eavesdropper causes errors in transmission that can be detected
- 6. Understand and implement Lattice based cryptography algorithm.
- 7. Understand and implement code-based cryptography algorithm.
- 8. Implement a real-world application of secure quantum keys.
- 9. Implement the quantum circuits using universal set of gates.
- 10. Code a quantum computer using simulator to carry basic quantum measurement.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the advent of quantum computing in security.
- 2. Comprehend the concepts of public-key cryptography standardization procedure.
- 3. Analyse various cryptographic algorithms.
- 4. Implement post-quantum post-quantum secure public-key algorithms focusing on both key-encapsulation and digital signature.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Phillip Kaye, Raymond Laflamme	An introduction to Quantum Computing	Oxford University press	2007	019857049X
Chris Bernhardt	Quantum Computing for Everyone	The MIT Press	2020	0262039257
M. A. Nielsen &I.Chuang	Quantum Computation and Quantum Information	Cambridge University Press	2013	9781107002173

Course Title: Introduction to Web Technology (Specialization: Full Stack Development)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Basics of Web Technology	11 H
Introduction to the internet and World Wide Web, Client-server architecture and its components, Understanding HTTP, URL, and DNS, Web development tools and technologies, Web standards and protocols.	
Unit II: Web Design and Development	12 H
User Interface design principles, Understanding HTML and CSS for web design, Responsive web design, Introduction to client-side scripting, Introduction to server-side scripting.	
Unit III: Web Programming and Database Connectivity	11 H
Introduction to databases and SQL, Understanding server-side scripting with PHP, Introduction to AJAX, Web Security and Best Practices.	
Unit IV: Advanced Web Technologies and Emerging Trends	11 H
Introduction to Web Services and API, Introduction to Content Management Systems (CMS), Introduction to Cloud Computing, Mobile Web Development	

List of Experiments (Total:30 Hours)

- 1. Introduction to Web Browsers
- 2. HTML Markup
- 3. Cascading Style Sheets (CSS)
- 4. Introduction to JavaScript
- 5. HTML Forms
- 6. CSS Layouts
- 7. Responsive Web Design
- 8. Introduction to PHP
- 9. Database Connectivity with PHP and MySQL
- 10. AJAX and JSON
- 11. Introduction to Web Services
- 12. CMS Development
- 13. Cloud Computing
- 14. Mobile Web Development

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the basics of web technology and the internet.
- 2. Develop web applications using HTML, CSS, JavaScript, and PHP.
- 3. Understand web programming concepts and database connectivity.
- 4. Demonstrate knowledge of emerging web technologies and trends.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Randy Connolly and Ricardo Hoar	Fundamentals of Web Development	Pearson	2019	978-0134481268
Jennifer Niederst Robbins	Learning Web Design: A Beginner's Guide to HTML, CSS, JavaScript, and Web Graphics	O'Reilly Media	2018	978-1491960202
Luke Welling and Laura Thomson	PHP and MySQL Web Development	Addison-Wesley Professional	2016	978-0321833891
Terry Felke- Morris	Web Development and Design Foundations with HTML5	Pearson	2019	978-0134801148

Course Title: Information System Design and Implementation

Course Contents/syllabus:					CREDIT UNITS
	3	0	0	0	3
					Teaching
					Hours
Unit I: Introduction					15 H
Definition and characteristics of a system. Elements	of a	syste	m		
Environment: Boundaries and interface. Types of system	ns: P	hysic	al		
or Abstract Systems, Open and Closed System, M	lan -	mac	le		
information systems.					
The System Development Life Cycle: Introduction	to	variou	ıs		
phases-Recognition of Need, Feasibility Study, Analy	sis, I	Desig	n,		
Implementation, Post-Implementation and Maintenanc	e.				
The Role of System Analyst: Skills of a System Anal	yst,	vario	ıs		
roles of the Analyst.					
Unit II: Planning and Information Gathering					15 H

L T P/S SW/FW TOTAL

System Planning and the Initial Investigation: Bases for planning in system analysis, Initial investigation, determining the users information requirements, Problem definition and Project Initiation, Background Analysis, Fact Finding, Fact Analysis, Determination of Feasibility. Information Gathering: Introduction, Information Gathering tools: Review of Literature, Procedures and forms. On -site observation. Interviews and questionnaires.		
Tools of Structured Analysis: Various tools of structured analysis: Data flow diagram (DFD), Data Dictionary, Decision tree and		
structured English, Decision table, Pros and cons of each tools.		
Unit III: Feasibility and System Design		15 H
Feasibility Study: System Performance-statement of Constraints, Identification of Specific System Objectives, description of Outputs. Feasibility Study – Feasibility considerations, Steps in feasibility analysis. Feasibility Report. System Design: The Process of Design-Logical and Physical Design, Design methodologies: Structured design, Functional Decomposition. System Testing and Quality Assurance: Testing, System testing, Quality assurance and its goals in its system life cycle, Levels of quality assurance, Trends in testing.		12.11
Unit IV: Implementation and Maintenance		15 H
Introduction, Conversion- Activity network for Conversion, File Conversion, User Training: Elements of user Training Post implementation review. Software Maintenance - Primary activities of a Maintenance Procedure, Reducing Maintenance Costs. Hardware and Software Selection: Types of Software, Procedure for Hardware/Software selection: Major phases in selection, Evaluation and Validation, Vendor Selection, Post — Installation Review. Software selection- Criteria for Software Selection, the evaluation process.		

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand key elements of system Design
- 2. Understand about planning and information gathering methods.
- 3. To gain insights on physical and logical design of an system.4. Implement various testing methodologies.
- 5. Analyze the quality of an information system.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
E.M. Awad	Systems Analysis and Design	Galgotia	2010	978- 8175156180
Hardgrave Bill C., Siau Keng, Chiang Roger H. L.	Systems Analysis and Design: Techniques, Methodologies, Approaches and Architectures	Routledge	2009	978- 0765623522

Perry Edwards, Kathleen Edwards	Systems Analysis and Design	Mc Graw Hill	1993	978- 0070195738

Course Title: IPR & Cyber Laws

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3

	5	•	U	U			
						Teachin Hours	g
Unit I: Introduction						10 H	
Overview of Computer and Web Technology, Ne	ed for	. (Cyber	Law,			
Jurisdictional Aspects in Cyber Law, Issues of jurisdiction	n in cyb	ers	space, T	Гуреѕ			
of jurisdictions, Minimum Contacts Theory, Sliding Scal	e Theo	ry,	Effects	s Test			
and International targeting, Jurisdiction under IT Act, 20	00.						
Unit II: Cyber Crime and Legal Framework						12 H	
Cyber Crimes against Individuals, Institutions and St	ate: Ha	ack	ing, D	igital			
Forgery, Cyber Stalking/Harassment, Cyber Pornograp	ohy, Ide	ent	ity The	eft &			
Fraud, Cyber Terrorism, Cyber Defamation;							
Concept of privacy, Right to Privacy and Data Protection	on Int	ern	et, Thr	eat to			
privacy on internet							
Unit III: Intellectual Property						12 H	
Introduction and the need for intellectual property right	(IPR),	IP	R in In	dia –			
Genesis and Development, Concept of Patents; Patenta	bility;	No	n-pater	ntable			
inventions, Process of obtaining a patent; Rights of a pat	entee						
Unit IV: Copyright and Trademark						11 H	
Copyright: Idea-expression Dichotomy, Works Pro-	tected	by	Copy	right,			
Registration of Copyright, Term of Copyright Protection	n, Righ	ts (conferr	ed by			
Copyright, Doctrine of Fair-use, Infringement and Re	emedies	S. 7	Γraden	nark:			
Essential features of a Trademark, Conventional and	Conten	npo	rary n	arks,			
Registration; Grounds for Refusal of Registration;	Differ	en	ce bet	ween			
infringement of Trademark and Passing off; Infringement	t and R	Ren	nedies				

Course Learning Outcomes: After studying this course students will be able to:

- 1. Identify statutory, regulatory, constitutional, and organizational laws that affect the information technology professional.
- 2. Categorize case law and common law to current legal dilemmas in the technology field.
- 3. Outline the primary forms of intellectual property rights.
- 4. Compare the different forms of intellectual property protection in terms of their key differences and similarities.
- 5. Analyze the effects of intellectual property rights on society as a whole.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Anirudh Rastogi	Cyber Law-Law of Information Technology And Internet	Lexis Nexis	2014	978- 9351432548
Vakul Sharma	Information Technology Law and Practice Cyber Laws and Laws Relating to E- Commerce	Universal Law Publishing	2016	978- 9350358917
Pankaj Sharma	Information Security and Cyber Laws	Kataria S. K., & Sons	2010	978- 9350140710
Navneet Nagpal	Intellectual Property Right	Educreation Publishing	2017	978- 1545707975
Dr. S.K. Singh	Intellectual Property Rights	Central law agency	2019	9788194003649

Course Title: Cyber Security

Course Contents/syllabus:	L	1	P/S	SW/FW	CREDIT UNITS
	3	0	0	0	3

	3	U	U	,		U	3
							Teaching
							Hours
Unit I: Introduction							15 H
Introduction to Cyber Space: History of Internet, Cyber	Crim	e, In	form	atic	on		
Security, Computer Ethics and Security Policies, Choosi	ng the	e Bes	t Bro	ows	er		
according to the requirement and email security, Guide	lines	to ch	oose	e we	eb		
browsers, Securing web browser, Antivirus, Email.							
Guidelines for secure password and wi-fi security: Guid	elines	s for	setti	ng ı	ıp		
a Secure password, Two-steps Password management, V	Vi-Fi	Secu	irity				
Guidelines for social media and basic Windows secu	rity: (Guid	eline	es f	or		
social media							
Unit II: Mobile Phone Security and Initiatives							15 H
Introduction to mobile phones, Smartphone Security, Ar	droid	l Sec	urity	, IC	S		
Security.							
Cyber Security Initiatives in India: Counter Cyber Se	curity	/ Init	iativ	es	in		
India, Cyber Security Exercise, Cyber Security Incident	Hanc	lling					
Unit III: Online Banking Security							15 H
Overview of Online Banking Security, Mobile Banking	g Sec	urity	, Se	curi	ty		
of Debit and Credit Card, UPI Security							
Unit IV: Cyber Security Threats and Mitigation							15 H
Cyber Security Threat Landscape, Emerging Cyber Sec	urity	threa	ats, (Cyb	er		
Security Techniques, Firewall. IT Security Act and M	sc. T	opics	s: IT	Ac	ct,		
Hackers-Attacker Countermeasures, Web Application	n Sec	curity	, D	igit	al		
Infrastructure Security, Defensive Programming							

Course Learning Outcomes: After studying this course students will be able to:

- 1. Define key knowledge areas of cyber security
- 2. Justify the need of various measures to protect cyber space
- 3. Identify various threats to cyber security
- 4. Take countermeasures against hacking
- 5. Perform secure online banking.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Anand Shinde	Introduction to Cyber Security: Guide to the World of Cyber Security	Notion Press	2013	978- 1637816424
Sanil Nadkarni	Fundamentals of Information Security	ВРВ	2016	978- 9389328400
J.S. Sandhu	Cybersecurity for Executives	Notion Press	2021	979- 8885036221
Rajesh Kumar Goutam	Cyber Security Fundamentals	ВРВ	2021	978- 9390684731
George Reynolds, Ralph Stair	Information System	Cengage	2014	978- 1259029950
Jatindra Pandey	Introduction to Cyber Security	Uttarakhand Open University	2017	978-93- 84813-96-3

Program Structure for B. Tech. CSE Semester VI

Sr. No.	Course Code	Course Title	Type of course	Type of course Hours per week			Credits
				L	Т	P	
1		Compiler Design	Core Course	3	0	2	4

2	Agile Software Development	Core Course	3	0	2	4
3	Computer Networks	Core Course	3	0	2	4
4	**Open Elective -II	Inter-Disciplinary Elective	3	0	0	3
5	Domain Elective -II	Domain Elective Course	3	0	0	3
6	Specialization – II	Specialization Elective	3	0	2	4
7	Minor Project	NTCC	0	0	4	2
	TOTAL		18	0	12	24
		Total Credits	Min Required: 24		ed: 24	
			Semester Credits: 24			

^{**6-8} Weeks Industrial/Institutional training after 6th Semester

Domain Elective II

Enterprise resource Planning
Internet of Things
Data Warehousing and Data Mining
Course Title: Compiler Design

		1					
	L	T	P/S	S	W/FW	TOTAL	
Course Contents/syllabus:						CREDIT	Γ
Course Contents/syndous.						UNITS	
	3	0	2		0	4	
						Teachin	ıg
						Hours	
Unit I: Introduction						12 H	
Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer –							
Input Buffering – Specification of Tokens – Recognition	n of T	Γoken	ıs – Lex	. –			
Finite Automata – Regular Expressions to Automata – N	Minin	nizing	g DFA				
Unit II: Syntax Analysis						11 H	
Role of Parser – Grammars – Error Handling – Conte	xt-fr	ee gra	ammars	-			
Writing a grammar, Top-Down Parsing – General Strategies Recursive							
Descent Parser – Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR							
Parser- LR (0) Item Construction of SLR Parsing Table - Introduction to							
LALR Parser – Error Handling and Recovery in Syntax Analyzer-YACC							
Unit III: Intermediate Code Generation						12 H	

^{**} Open Elective to be taken from the subjects offered by other Schools/departments of AUP.

Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking.		
Unit IV: Code Optimization & Code Generation		11 H
Storage Organization, Stack Allocation Space, Access to Non-local Data on		
the Stack, Heap Management – Issues in Code Generation – Design of a		
simple Code Generator.		
Principal Sources of Optimization – Peep-hole optimization – DAG-		
Optimization of Basic Blocks-Global Data Flow Analysis – Efficient Data		
Flow Algorithm		

List of Experiments (Total:60 Hours)

- 1. Design a lexical analyser for given language and the lexical analyser should ignore redundant spaces, tabs and new lines. It should also ignore comments. Although the syntax specification states that identifiers can be arbitrarily long, you may restrict the length to some reasonable value. Simulate the same in C language.
- 2. Write a C program to identify whether a given line is a comment or not.
- 3. Write a C program to recognize strings under 'a', 'a*b+', 'abb'.
- 4. Write a C program to test whether a given identifier is valid or not.
- 5. Write a C program to simulate lexical analyzer for validating operators.
- 6. Implement the lexical analyzer using JLex, flex or other lexical analyzer generating tools.
- 7. Write a C program for implementing the functionalities of predictive parser for the mini language.
- 8. a) Write a C program for constructing of LL (1) parsing.
 - b) Write a C program for constructing recursive descent parsing.
- 9. Write a C program to implement LALR parsing.
 - a) Write a C program to implement operator precedence parsing.
 - b) Write a C program to implement Program semantic rules to calculate the expression that takes an expression with digits, + and * and computes the value.
- 10. Convert the BNF rules into YACC form and write code to generate abstract syntax tree for the mini language.
- 11. Write a C program to generate machine code from abstract syntax tree generated by the parser.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Build concepts on lexical analysis.
- 2. Understand strategies of syntax analysis.
- 3. Learn techniques of Intermediate code generation.
- 4. Understand code design issues and design code generator.
- **5.** Design and develop optimized codes.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
A.V. Aho, Monica, R.Sethi, J.D.Ullman	Compilers, Principles, Techniques and Tools	Pearson	2013	978- 9332518667

Andrew W. Appel	Modern Compiler Implementation in Java	Cambridge University Press	2002	978- 0521820608
J.P. Tremblay and P.G. Sorrenson	The Theory and Practice of Compiler Writing	PSP Books	2005	978- 8178000770

Course Title: Agile Software Development

Course Contenta/grillohyga	L	Т	P/S	S	W/FW	TOTAL CREDIT
Course Contents/syllabus:						UNITS
	3	0	2		0	4
		•				Teaching
						Hours
Unit I: Introduction						12 H
Basics and Fundamentals of Agile Process Method	s, Va	lues	of Agi	le,		
Principles of Agile, stakeholders, Challenges						
Lean Approach: Waste Management, Kaizen and Kan	oan, a	dd pr	ocess a	nd		
products add value. Roles related to the lifecycle, differ	ences	betw	een Ag	ile		
and traditional plans, differences between Agile plans	at dif	ferent	lifecyo	ele		
phases. Testing plan links between testing, roles a	ınd k	ey te	chnique	es,		
principles, understand as a means of assessing the initi	al stat	us of	a proje	ct/		
How Agile helps to build quality						
Unit II: Agile and Scrum Principles					11 H	
Agile Manifesto, Twelve Practices of XP, Scrum Practic	es, A	pplyii	ng Scru	m.		
Need of scrum, working of scrum, advanced Scrum Applications, Scrum and						
the Organization, scrum value						
Agile Requirements: User Stories, Backlog M	I anag	emen	t. Ag	ile		
Architecture: FeatureDriven Development. Agile Risk	Mar	nagem	ent: Ri	sk		
and Quality Assurance, Agile Too						
Unit III: Agile Product Management						11 H
Communication, Planning, Estimation Managing t	he A	gile	approa	ch		
Monitoring progress, Targeting and motivating the team	ı, Maı	naging	g busine	ess		
involvement, Escalating issue. Quality, Risk, Metrics	and	Meas	uremen	ts,		
Managing the Agile approach Monitoring progre	ess,	Targe	ting a	nd		
motivating the team, Managing business involvement a	nd Es	scalati	ng issu	e		
Unit IV: Agile Testing & Review						11 H
Agile Testing Techniques, Test-Driven Development, U	Jser A	ccept	ance To	est		
Agile Metrics and Measurements, The Agile approach	h to	estim	ating a	nd		
project variables, Agile Measurement, Agile Control: the 7 control						
parameters. Agile approach to Risk, The Agile approach	ach to	Con	figurati	on		
Management, The Atern Principles, Atern Philosoph	y, Th	e rati	onale f	or		
using Atern, Refactoring, Continuous integration, Auto	mated	d Buil	d Tools	3		

List of Experiments (Total: 30 Hours)

- 1. Understand a given business scenario and identify product backlog, user stories and sprint tasks.
- 2. Define user stories for a given feature
- 3. Fill user stories, sprint schedule and sprint tasks in an Agile tool such as Agile Fantto
- 4. To study and use automated build tool.
- 5. To study-- version control tool.

- 6. To study Continuous Integration tool
- 7. Write unit tests aligned to xUnit framework for TDD
- 8. Apply Design principle and Refactoring to achieve agility.
- 9. Perform Testing activities within an agile project.
- 10. Refactor a given design for next sprint requirements
- 11. Execute continuous integration using a tool such as Jenkins
- 12. Mini Project: based on tools

*Note: Experiments may be performed on any open-source tool available.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand concept of agile software engineering and its advantages in software development
- 2. Explain the role of design principles in agile software design.
- 3. Analyze the core practices behind Scrum framework.
- 4. Apply design principles and refactoring to achieve Agility
- 5. Build testing activities within an Agile project

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Ken Schawber, Mike Beedle	Agile Software Development with Scrum	Pearson	2002	978- 0130676344
Lisa Crispin, Janet Gregory	Agile Testing: A Practical Guide for Testers and Agile Teams	Addison Wesley	2009	978- 0321534460
Robert C. Martin	Agile Software Development, Principles, Patterns and Practices	Prentice Hall	2013	978- 1292025940
Alistair Cockburn	Agile Software Development: The Cooperative Game	Addison Wesley	2006	978- 0321482754
Andrew Stellman, Greene Jennifer	Learning Agile	O'Reilly Series	2014	978- 9351108986

Course Title: Computer Networks

Course Contents/syllabus:		T	P/S	SV	V/FW	TOTAL CREDIT UNITS
	3	0	2		0	4
						Teaching
						Hours
Unit I: Introduction to Networks						12 H

Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.	
Unit II: Data Link Layer and Medium Access Layer	11 H
Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back - N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CDCDMA/CA	
Unit III: Network and Transport Layer	12 H
Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols. Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	
Unit IV: Application Layer	11 H
Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography	

List of Experiments

(Total: 30 Hours)

- 1. To study the different types of Network cables and network topologies.
- 2. Practically implement and test the cross-wired cable and straight through cable using clamping tool and network lab cable tester.
- 3. Study and familiarization with various network devices.
- 4. Familiarization with Packet Tracer Simulation tool/any other related tool.
- 5. Study and Implementation of IP Addressing Schemes
- 6. Creation of Simple Networking topologies using hubs and switches
- 7. Simulation of web traffic in Packet Tracer
- 8. Study and implementation of various router configuration commands
- 9. Creation of Networks using routers.
- 10. Configuring networks using the concept of subnetting
- 11. Practical implementation of basic network command and Network configuration commands like ping, ipconfig, netstat, tracert etc. for troubleshooting network related problems.
- 12. Configuration of networks using static and default routes.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain the functions of the different layer of the OSI Protocol.
- 2. Understand the Error detection and correction in computer networks.
- 3. Describe the function of each block of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- 4. Develop the network programming for a given problem related TCP/IP protocol.
- 5. Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open-source available software and tools

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Behrouz A. Forouzan	Data Communication and Networking	ТМН	2017	978- 1259064753
William Stallings	Data and Computer Communication	Pearson	2017	978- 9332586932
Andrew S. Tanenbaum	Computer Networks	Pearson	2013	978- 9332518742
Douglas Comer	Internetworking with TCP/IP	Pearson	2015	978- 9332550100
W. Richard Stevens	TCP/IP Illustrated	Pearson	2014	978- 9332535954

Course Title: Enterprise Resource Planning

Course Contents/syllabus:	L	T	P/S	SW/	FW	TOTAL CREDIT UNITS
	3	0	0	()	3
			Teaching Hours			
Unit I: Introduction						15 H
Related Technologies – Business Intelligence – EComm	nerce	and I	EBusine	ess		
- Business Process Reengineering - Data Warehousing		Data	Mining	; —		
OLAP – Product life Cycle management – SCM – CRM						
Unit II: ERP Implementation						15 H
Implementation Challenges – Strategies – Life Cycle – Pre-implementation						
Tasks – Requirements Definition – Methodologies – I	Packa	age se	election	. —		
Project Teams –Process Definitions – Vendors and				ata		
Migration – Project management – Post Implementation	Acti	ivities	S.			
Unit III: ERP in Business						15 H
Operation and Maintenance – Performance – Maximizin						
Business Modules – Finance – Manufacturing – Huma						
maintenance – Materials Management – Quality manage	emen	t — Mi	arketing	g –		
Sales, Distribution and service						15 TT
Unit IV: ERP Market and Applications	7 C:	ID I				15 H
Marketplace – Dynamics – SAP AG – Oracle – Peoples			Lawaras	3 –		
QAD Inc – SSA Global – Lawson Software – Epicor – Intuitive.						
ERP Application: Enterprise Application Integration – ERP and E-Business – ERP II – Total quality management – Future Directions – Trends in ERP.						

Course Learning Outcomes: After studying this course students will be able to:

- 1. Develop model for ERP for large projects
- 2. Develop model for E-commerce architecture for any application
- 3. Describe the advantages, strategic value, and organizational impact of utilizing an ERP system for the management of information across the functional areas of a business: sales and marketing, accounting and finance, human resource management, and supply chain
- 4. Demonstrate a working knowledge of how data and transactions are integrated in an ERP system to manage the sales order process, production process, and procurement process.
- 5. Evaluate organizational opportunities and challenges in the design system within a business scenario.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Alexis Leon	ERP DEMYSTIFIED	Mc Graw Hill	2014	978- 9383286676
Mary Sumner	Enterprise Resource Planning	Pearson	2013	978- 1292039800
Jim Mazzullo	SAP R/3 for Everyone	Prentice Hall	2005	978- 0131860858
Jose Antonio Hernandz et al.	The SAP R /3 Handbook	Mc Graw Hill	2006	78- 0070634800
Biao Fu	SAP BW: A Step-by-Step Guide	Pearson	2002	978- 0201703665

Course Title: Internet of Things

Course Contents/syllabus:	L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3

	Teaching Hours
Unit I: Introduction	15 H
Architectural Overview, Design principles and needed capabilities, IoT	
Applications, Sensing, Actuation, Basics of Networking, M2M and IoT	
Technology Fundamentals- Devices and gateways, Data management,	
Business processes in IoT, Everything as a Service (XaaS), Role of Cloud in	
IOT and Security aspects of IOT.	
Unit II: Data Representation and Analysis	15 H
Hardware Components- Computing (Arduino, Raspberry Pi),	
Communication, Sensing, Actuation, I/O interfaces. Software Components-	
Programming API's (using Python /Node.js /Arduino) for Communication,	
Protocols-MQTT, ZigBee, Bluetooth, CoAP, UDP, TCP	
Unit III: Coding and Compression	15 H

Solution framework for IoT applications- Implementation of Device integration, Data acquisition and integration, Device data storage-	
Unstructured data storage on cloud/local server, Authentication,	
authorization of devices.	
Unit IV: Multimedia Technology Development	15 H
IoT case studies and mini projects based on Industrial automation,	
Transportation, Agriculture, Healthcare, Home Automation	

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand internet of Things and its hardware and software components
- 2. Interface I/O devices, sensors & communication modules
- 3. Remotely monitor data and control devices
- 4. Understand the concept of authorization and authentication of devices.
- 5. Develop real life IoT based projects

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Vijay Madisetti, Arshdeep Bahga	Ïnternet of Things: A Hands-on Approach	Orient Blackswan Private Limited	2015	978- 8173719547
Rahul Dubey	An Introduction to Internet of Things: Connecting Devices, Edge Gateway, and Cloud with Applications	Cengage Learning	2019	978- 8177584417
Pethuru Raj and Anupama C. Raman	The Internet of Things: Enabling Technologies, Platforms, and Use Cases	Auerbach Publications	2017	978- 1498761284
Raj Kamal	Internet of Things: Architecture and Design	Mc-Graw Hill	2017	978- 9352605224
Adrian McEwen	Designing the Internet of Things	Wiley	2013	978- 1118430620

Course Title: Data Warehouse and Data Mining

Course Contents/syllabus:		Т	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3
					Teaching Hours
Unit I: Introduction					15 H

Need for strategic information, difference between operational and Informational data stores Data warehouse definition, characteristics, Data warehouse role and structure, OLAP Operations, Data mart, Different between data mart and data warehouse, approaches to build a data	
warehouse, Building a data warehouse, Metadata & its types.	1 / TT
Unit II: Data Pre-processing & Schemas	15 H
Data Pre-processing: Need, Data Summarization, Methods. Denormalization, Multidimensional data model, Schemas for multidimensional data (Star schema, Snowflake Schema, Fact Constellation Schema, Difference between different schemas. Data warehouse architecture, OLAP servers, Indexing OLAP Data, OLAP query processing, Data cube computation	
Unit III: Data Mining	15 H
Unit III: Data Mining Data Mining: Definition, Data Mining process, Data mining methodology, Data mining tasks, Mining various Data types & issues. Attribute-Oriented Induction, Association rule mining, Frequent itemset mining, The Apriori Algorithm, Mining multilevel association rules.	15 H
Data Mining: Definition, Data Mining process, Data mining methodology, Data mining tasks, Mining various Data types & issues. Attribute-Oriented Induction, Association rule mining, Frequent itemset mining, The Apriori	15 H

Course Learning Outcomes: After studying this course students will be able to:

- 1. Highlight the need of Data Warehousing & Mining
- 2. Differentiate between the Transactional and Analytical data models.
- 3. Identify the real-life applications where data mining can be applied.
- 4. Apply different data mining algorithms on wide range of data sets.
- 5. Explain the role of visualization in data representation and analysis.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
A. Berson	Data Warehousing, Data Mining & Olap	Mc Graw Hill	2017	978- 0070587410
Han J., Kamber M., and Pei J	Data mining concepts and techniques	Elsevier	2007	978- 9380931913
Pudi V., Krishana P.R.	Data Mining	OUP India	2009	978- 0195686289
Adriaans P., Zantinge D.	Data mining	Pearson	2002	9788131707173
Pooniah P.	Data Warehousing Fundamentals	Wiley	2012	978- 8126537297

Course Title: Machine Learning (Specialization: AI & ML)

	L	T	P/S	SW/FW	TOTAL
					CREDIT
Course Contents/syllabus:					UNITS
	3	0	2	0	4

	Teaching Hours
Unit I: Introduction	11 H
Introduction to ML, Terminologies, applications, learning associations, Types of ML: Supervised learning, Unsupervised learning and Reinforcement learning. Learning a Class from Examples, Linear, Nonlinear, Multi-class and multi-label classification, Data Pre-processing,	
Splitting dataset (Test +Train)	
Unit II: Classification	12 H
Introduction to classification, Need, Logistic Regression, Decision tree, split algorithm based on Information gain, Gini index, Random Forest classification, Naïve Bayes algorithm, K-Nearest Neighbours (K-NN), Support Vector Machine (SVM), Performance metrices.	
Unit III: Clustering	12 H
Introduction to clustering, Need, Hierarchical Clustering, Partitional, Density based, K-means clustering, K- Mode Clustering	
Unit IV:	10 H
Ensembles: Bagging boosting, Genetic Algorithms, Principal components analysis (PCA), Other applications of machine learning.	

List of Experiments (Total:30 Hours)

- 1. Implement Naive Bayes, Decision Tree learning.
- 2. Implement Linear Regression.
- 3. Implement Logistic Regression.
- 4. Implement classification using SVM
- 5. Implement Bagging using Random Forests
- 6. Implement K-means Clustering to Find Natural Patterns in Data.
- 7. Implement K-mode clustering
- 8. Implement Hierarchical clustering.
- 9. Implement ensemble learning.
- 10. Perform comparison of Machine Learning algorithms.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the basics of machine learning along with its relevance in real life world.
- 2. Develop an understanding of various machine learning approaches and their use.
- **3.** Choose classification models and apply them on datasets to perform prediction tasks.
- **4.** Gain knowledge about clustering techniques and implement them on real life datasets.
- 5. Analyze different applications of machine learning and examine the performance of ML models on them.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Ethem Alpaydin,	Introduction to Machine Learning	MIT Press, Prentice Hall of India,	2014	978-0262043793
Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar	Foundations of Machine Learning	MIT Press	2012	978-0262018258
Tom Mitchell	Machine Learning	McGraw Hill	1997	0-07-15467-1
Charu C. Aggarwal	Data Classification Algorithms and Applications	CRC Press	2014	978-1466586741

Course Title: AI & ML on Cloud (Specialization: Cloud Computing)

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4

	U	7
		Teaching Hours
Unit I: Introduction to Data Science and AI & ML:		12 H
Introduction to AI & ML, AI Techniques, The Level of the Model, Criteria		
for Success. Defining the Problem as a State Space Search, Problem		
Characteristics, Production Systems, Search: Issues in The Design of Search		
Programs, Un-Informed Search, BFS, DFS; Heuristic Search Techniques:		
Generate-And- Test, Hill Climbing, Best-First Search, A* Algorithm,		
Problem Reduction, AO*Algorithm, Constraint Satisfaction, Means-Ends		
Analysis.		
Unit II: – Experts Systems:		10 H
Overview of an Expert System, Structure of an Expert Systems, Different		
Types of Expert Systems- Rule Based, Model Based, Case Based and Hybrid		
Expert Systems, Knowledge Acquisition and Validation Techniques.		
Unit III: Machine Learning Basics:		12 H
Learning – Types of Machine Learning – Supervised Learning – The Brain		
and the Neuron – Design a Learning System – Perspectives and Issues in		
Machine Learning – Concept Learning Task – Concept Learning as Search		
- Finding a Maximally Specific Hypothesis - Version Spaces and the		
Candidate Elimination Algorithm – Linear Discriminants – Perceptron –		
Linear Separability – Linear Regression.		
Unit IV: Linear Models:		11 H

Multi-layer Perceptron - Going Forwards - Going Backwards: Back	
Propagation Error – Multilayer Perceptron in Practice – Examples of using	
the MLP – Deriving Back-Propagation – Radial Basis Functions and Splines	
-RBF Network - Curse of Dimensionality - Interpolations and Basis	
Functions – Support Vector Machines	

List of Experiments (Total:30 Hours)

- 1. Implement A* Search algorithm.
- 2. Implement AO* Search algorithm.
- 3. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 4. Write a python program to implement simple Chatbot
- 5. Write a python program to implement List methods (Add, Append, Extend & Delete)
- 6. Write a python program to implement Water Jug Problem?
- 7. Write a program to implement Tic-Tac-Toe game using python.
- 8. Write a program to implement Hangman game using python

Course Learning Outcomes: After studying this course students will be able to:

- 1. To learn the overview of artificial intelligence principles and approaches
- 2. Develop intelligent algorithms for constraint satisfaction problems and also design intelligent systems for Game Playing.
- 3. To enable students to understand different techniques related to Machine Learning.
- 4. Build and deploy production grade AI/ML applications
- 5. Construct algorithms to learn linear and non-linear models

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
S. Russell and P. Norvig	Artificial Intelligence: A Modern Approach	Prentice Hall	2010	978- 0136042594
M. Tim Jones	Artificial Intelligence: A Systems Approach (Computer Science)	Jones and Bartlett Publishers	2009	978- 0763773373
Ethem Alpaydin	Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series)	Third Edition, MIT Press	2014	978- 8120350786
Jason Bell	Machine learning – Hands on for Developers and Technical Professionals	Wiley	2014	978- 8126553372

Course Title: Web and Mobile Security (Specialization: Cyber Security)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Web Application Vulnerabilities:	12 H
Introduction to Web Application, Web Functionality, OWASP Top 10 Vulnerabilities, SQL Injection: SQL commands using XAMPP, NoSQL Injection, Manual SQL (Union Based), Authentication Based SQL Injection, Error Based SQL Injection, Blind SQL Injection, Boolean Based Blind SQL Injection, Time Based SQL Injection, Brute force attack, Path Traversal Attacks	1211
Unit II: – Broken Authentication and Sensitive Data Exposure	12 H
Vulnerabilities:	
Broken Authentication/ session id, Types of Broken Authentication, Weak Session ID, Improper Error Handling, Session Management, Authentication Security: Authentication Techniques, Design Flaws in Authentication, Implementation Flaws in Authentication, Securing Authentication	
Unit III: Scripting Attacks:	10 H
Introduction to JavaScript, Cross Site Scripting (XSS): Types of Cross site scripting: Reflected XSS, Stored XSS, DOM XSS, XSS in Real World, Finding and Exploiting XSS Vulnerabilities, Preventing XSS Attacks	
Unit IV: Mobile Security and its Exploitation:	11 H
Common Mobile Threats, Mobile platform access and application analysis. Manipulating application behavior, Mobile access Trojans. Exploit using AndroRAT. Web Framework Attacks: Exploiting Mobile application using Metasploit. Client-side injection attacks, Unlocking, rooting mobile devices, Weak wireless attacks.	

List of Experiments (Total:30 Hours)

- 1. Installation of XAMPP and creating Database and performing various commands of SQL
- 2. Implement Blind Based SQL injection in SQLi/Less-8/?id=1
- 3. Implement Broken Authentication and Session Management for: Insecure login Form
- 4. Implement Directory Traversal (Directories), Directory Traversal (Files) on vulnerable application.
- 5. Implement cross site request forgery (CSRF) using Burp Suite.
- 6. Identify and exploit Joomla Vulnerabilities and implement various attacks on it
- 7. Hack an Android device using ANDROID RAT
- 8. Data extraction from Android smart phone using mobile forensic tools
- 9. Exploit an Android device using Metasploit Framework
- 10. Implement Server-side request forgery (SSRF) using with and without Burp suite

Course Learning Outcomes: After studying this course students will be able to:

- 1. Develop skills to design applications to host on server and to understand the Social Engineering Techniques and Tools
- 2. Ability to discover top 10 OWASP Vulnerabilities in web applications and analyze them using various vulnerable applications and tools.
- 3. Discovering the Insights into common web application attacks, Exploit and Mitigate.

- 4. Exploits and expose XSS, sensitive data and security mis-configuration vulnerabilities in Web Apps
- 5. Identify threats, Analyze and Exploit mobile applications and Apply best practices to secure them

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Bryan Sullivan and Vincent Liu	Web Application Security: A beginner Guide	McGraw- Hill Education	2011	978- 0071776165
Steven Furnell	Mobile Security: a pocket Guide	IT Governance Publishing	2009	978- 1849280204
Nikolay Elenkov	Android Security Internals: An In-Depth Guide to Android's Security Architecture	No Starch Press	2014	978- 1593275815
Ben Walther and Paco Hope	Web Security Testing Cookbook: Systematic Techniques to Find Problems fast	O'Reilly Media	2008	978- 0596514839

Course Title: Machine Learning (Specialization: Data Science)

	L	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT
Course Contents/syllabas.					UNITS
	3	0	2	0	4

	3	U	4		U	4
	•					Teaching
						Hours
Unit I: Introduction						11 H
Introduction to ML, Terminologies, applications, Lear	rning	gass	ociatio	ns,		
Types of ML: Supervised learning, Unsupervise	ed	learn	ing a	nd		
Reinforcement learning. Learning a Class from Examp			-			
linear, Multi-class and multi-label classification, Dat	ta F	re-pi	ocessir	ng,		
Splitting dataset (Test + Train)		•				
Unit II: Classification						12 H
Introduction to classification, Need, Logistic Regression,	Dec	ision	tree, sp	olit		
algorithm based on Information gain, Gini index,	Ra	andor	n For	est		
classification, Naïve Bayes algorithm, K-Nearest Neighborn	ours					
(K-NN), Support Vector Machine (SVM), Performance n	netri	ices.				
Unit III: Clustering						12 H
Introduction to clustering, Need, Hierarchical Clust	erin	g, P	artition	al,		
Density based, K-means clustering, K- Mode Clustering						
Unit IV:						10 H
Ensembles: Bagging boosting, Genetic Algorithms, Prin	ncipa	al co	mponei	nts		
analysis (PCA), Other applications of machine learning.	-		-			

List of Experiments (Total:30 Hours)

- 1. Implement Naive Bayes, Decision Tree learning.
- 2. Implement Linear Regression.
- 3. Implement Logistic Regression.
- 4. Implement classification using SVM
- 5. Implement Bagging using Random Forests
- 6. Implement K-means Clustering to Find Natural Patterns in Data.
- 7. Implement K-mode clustering
- 8. Implement Hierarchical clustering.
- 9. Implement ensemble learning.
- 10. Perform comparison of Machine Learning algorithms.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the basics of machine learning along with its relevance in real life world.
- 2. Develop an understanding of various machine learning approaches and their use.
- **3.** Choose classification models and apply them on datasets to perform prediction tasks.
- **4.** Gain knowledge about clustering techniques and implement them on real life datasets.
- **5.** Analyze different applications of machine learning and examine the performance of ML models on them.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Ethem Alpaydin,	Introduction to Machine Learning	MIT Press, Prentice Hall of India,	2014	978- 0262043793
Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar	Foundations of Machine Learning	MIT Press	2012	978- 0262018258
Tom Mitchell	Machine Learning	McGraw Hill	1997	0-07-15467-1
Charu C. Aggarwal	Data Classification Algorithms and Applications	CRC Press	2014	978- 1466586741

Course Title: Introduction to Raspberry Pi & Arduino (Specialization: IOT & Blockchain)

Course Contents/syllabus:	L	T	P/S	SV	V/FW	TOTAL CREDIT UNITS
	3	0	2		0	4
						Teaching
						Hours
Unit I:: Getting Started with Raspberry Pi						12 H

Basic functionality of Raspberry Pi B+ board, implications of an operating system on the behavior of the Raspberry Pi as an IoT device, booting Raspberry Pi 3, Downloading an Operating System, format an SD card and		
booting the OS. Basics of Linux and its use, main features including navigating the file system and managing processes, overview of the graphic		
user interface for Raspian Linux distribution.		
Unit II: Interfacing with the Raspberry Pi		12H
Interfacing Hardware with the Raspberry Pi, Raspberry Pi Remote Access, operate the Raspberry Pi in "headless mode", Bash Command line, operating Raspberry Pi without needing a GUI interface, Basics of the Python programming language, programming on the Raspberry Pi. Communication with devices through the pins of the Raspberry Pi, RPi. GPIO library, setting up the pins, General purpose IO Pins, applying digital voltages, and generating Pulse Width Modulated signals, Tkinter Python library		
Unit III: The Arduino Environment		10 H
Introduction to the Arduino environment, the Arduino board, the Arduino IDE, and the Arduino compatible shields together with their libraries. Arduino board main components, inputs, and outputs. Arduino Integrated		
Development Environment (IDE), Compiling Code, Arduino Shields and Libraries.		
Development Environment (IDE), Compiling Code, Arduino Shields and	_	11 H

List of Experiments (Total:30 Hours)

- 1. Getting started with Raspberry Pi, Install Raspian on your SD card
- 2. Linux basic commands.
- 3. Coding simple programs in Python.
- 4. How to use Python-based IDE (integrated development environments) for the Raspberry Pi and how to trace and debug Python code on the device
- 5. How to have your Raspberry Pi interact with online services through the use of public APIs and SDKs.
- 6. Arduino basic setup, and installation process.
- 7. Learning of Arduino use
- 8. Arduino Shields to extend the functionality of an Arduino based system.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain solid theoretical foundation, systematic professional knowledge.
- 2. Perform practical in the Raspberry Pi and Arduino.
- 3. Focuses on higher-level operating systems, advanced networking, user interfaces, multimedia and uses more computing intensive IoT applications.
- 4. Exposing Raspberry Pi running Linux as the platform of choice and comparable platforms like Arduino.
- 5. Design and deploy multiple IoT devices that could connect to the gateway.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Simon Monk	Programming the Raspberry Pi: Getting Started with Python	Mc-Graw Hill Professional	2012	978- 1259587405
Rajesh Singh, Anita Gehlot, Lovi Raj Gupta, Bhupendra Singh, Mahendra Swain	Internet of Things with Raspberry Pi and Arduino	CRC Press	2019	978- 0367248215
Eben Upton and Gareth Halfacree	Raspberry Pi User Guide	John Wiley & Sons	2016	978- 1119264361
Alex Bradbury and Ben Everard	Learning Python with Raspberry Pi	John Wiley & Sons	2014	978- 1118717059

Course Title: Quantum Algorithms and Complexity (Specialization: Quantum Computing)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL
				CREDIT UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Introduction to Quantum Algorithms and Complexity	13 H
Introduction to quantum computing, Basic quantum operations and quantum circuits, Quantum parallelism and superposition, Overview of quantum algorithms for factoring, search, and simulation, Classical complexity theory and quantum speedup.	
Unit II: Quantum Algorithms for Factoring and Search	10 H
Shor's algorithm for factoring, Grover's algorithm for search, Applications of factoring and search algorithms in cryptography and optimization	
Unit III: Quantum Simulation and Quantum Computational Models	12 H
Quantum simulation algorithms and their applications, Quantum computational models, including quantum Turing machines and quantum circuits, Comparison of quantum computational models to classical models	
Unit IV: Quantum Error Correction and Quantum Lower Bounds	10 H
Quantum error correction codes and their properties, Lower bounds for quantum algorithms and their relationship to quantum error correction, Quantum fault tolerance and the threshold theorem	

- 1. Grover's Algorithm: Implementing Grover's algorithm to search an unsorted database using a quantum computer.
- 2. Shor's Algorithm: Implementing Shor's algorithm to factorize large numbers using a quantum computer.
- 3. Simon's Algorithm: Implementing Simon's algorithm to find periodicity in a function using a quantum computer.
- 4. Quantum Fourier Transform: Implementing the quantum Fourier transform (QFT) algorithm using a quantum computer.
- 5. Quantum Phase Estimation: Implementing the quantum phase estimation (QPE) algorithm to estimate the eigenvalues of a unitary operator using a quantum computer.
- 6. Deutsch-Jozsa Algorithm: Implementing the Deutsch-Jozsa algorithm to determine whether a given function is constant or balanced using a quantum computer.
- 7. Bernstein-Vazirani Algorithm: Implementing the Bernstein-Vazirani algorithm to determine the hidden bitstring in an oracle function using a quantum computer.
- 8. Quantum Walks: Implementing quantum walks to simulate random walks on graphs using a quantum computer.
- 9. Quantum Error Correction: Implementing quantum error correction codes to protect quantum information from decoherence and other errors.
- 10. Quantum Complexity Theory: Exploring the theoretical foundations of quantum computing, including the complexity classes BQP and QMA.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Analyze the computational complexity of quantum algorithms for various problems, including factoring, search, and simulation.
- 2. Understand the relationships between quantum and classical algorithms, and be able to compare their advantages and disadvantages.
- 3. Evaluate the performance of quantum algorithms using the tools of quantum information theory and complexity theory.
- 4. Apply the principles of quantum error correction and quantum lower bounds to the analysis of quantum algorithms.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Michael A. Nielsen and Isaac L. Chuang	Quantum Computation and Quantum Information	Cambridge University Press	2011	978-1107002173
Richard J. Lipton and Kenneth W. Regan	Quantum Algorithms via Linear Algebra	The MIT Press	2014	978-0262512502
Marius Junge, Clemente L. Canales, and Rolando D. Somma	Introduction to Quantum Algorithms	Springer	2017	978-3319511569

Course Title: Mobile Application Development (Specialization: Full Stack Development)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Introduction to mobile application development	11 H
Types of mobile applications, Overview of mobile operating systems, Mobile application development platforms, Characteristics and Benefits – Application Model, Android Introduction & Building Blocks: Android Features, Architecture, Building Blocks, Application Components-Development Environment: Using Eclipse IDE for Mobile Development, Android Sdk, Emulator.	
Unit II: Mobile Application Design	12 H
Principles of mobile application design, User experience design, User interface design, Wireframing and prototyping tools	
Unit III: Mobile Application Development Platforms, Tools and Frameworks	12 H
Android app development, iOS app development, Cross-platform app development using React Native, Android Studio, Xcode, React Native framework, Ionic framework	
Unit IV: Testing, Debugging, Deployment of Mobile Applications and Security	10 H
Testing mobile applications, debugging mobile applications, deploying mobile applications to app stores, App store optimization, Security threats to mobile applications, Techniques for securing mobile applications, best practices for securing mobile applications	

List of Experiments (Total:30 Hours)

- Lab 1: Developing a simple Android application using Android Studio
- Lab 2: Developing a simple iOS application using Xcode
- Lab 3: Developing a simple cross-platform application using React Native
- Lab 4: Designing a mobile application interface using Adobe XD

- Lab 5: Designing a mobile application prototype using In Vision
- Lab 6: Debugging a mobile application using Android Studio
- Lab 7: Testing a mobile application using Firebase Test Lab
- Lab 8: Deploying a mobile application to Google Play Store
- Lab 9: Deploying a mobile application to Apple App Store
- Lab 10: Analyzing and optimizing a mobile application using Google Play Console

Course Learning Outcomes: After studying this course students will be able to:

- 1. Develop mobile applications using various development platforms.
- 2. Understand the principles of mobile application design and user experience.
- 3. Use mobile application development tools and frameworks.
- 4. Test, debug, and deploy mobile applications

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Tom White	Hadoop: The Definitive Guide	O'Reilly Media	2015	978-1491901632
Reto Meier	Professional Android 4 Application Development	Wrox	2012	978-1118102275
Craig Grannell, Victor Sumner, and Wei Meng Lee	Beginning iOS 13 & Swift App Development: Develop iOS Apps with Xcode 11, Swift 5, Core ML, ARKit and more	Apress	2019	978-1484254039
Chris T. Nguyen	Xamarin Mobile Application Development for Android - Second Edition	Packt Publishing	2016	978-1785280370

Program Structure for B. Tech. CSE

Semester VII

Sr. No.	Course Code	Course Title	Type of course	Hours per week		Credits	
				L	Т	P	
1		Specialization – III	Specialization Elective	3	0	2	4
2		Specialization – IV	Specialization Elective	3	0	2	4
3		Domain Elective -III	Domain Elective Course	3	0	0	3
4		Domain Elective -IV	Domain Elective Course	3	0	0	3
5		**Open Elective -III	Inter-Disciplinary Elective	3	0	0	3
6		Major Project	NTCC	0	0	8	4
7		**Industrial Training	NTCC	0	0	0	3
		TOTAL		15	0	12	24
			Total Credits	Min Required: 24 Semester Credits: 24			

Domain Elective III

Blockchain Technology Distributed Databases Network Security

Domain Elective IV

Parallel Computing Ethical Hacking Information Theory and Coding

Course Title: Soft Computing (Specialization: AI& ML)

Course Contents/syllabus:

\mathbf{L}	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Introduction	12 H
Biological Neural Network: Structure and working, Artificial Neural	
Networks & Applications, Fundamentals, Characteristics, History of neural	
networks, characteristics of neural networks terminology	
Unit II: Neural Network Models	11 H
Models of neuron McCulloch – Pitts model, Perceptron, Adaline model,	
Basic learning laws, Topology of neural network architecture, Multilayer	
Neural Networks	
Unit III: Learning methods and propagation	11 H
Learning Methods, Backpropagation, Counter propagation, ART, BAM,	
Associative memories	
Unit IV: Fuzzy Logic	11 H
Fuzzy sets, Fuzzy model, Fuzzy rule generation Fuzzy inference system,	
Defuzzification	
Introduction to Neuro-Fuzzy system, Architecture and its applications.	
Applications: Genetic Algorithms.	

List of Experiments

(Total:30 Hours)

- 1. Implement OR, AND Using Perceptron.
- 2. Implement OR, AND X-OR gate, Using back propagation algorithm
- 3. Apply operations using Fuzzy Logic.
- 4. Apply operations using Neuro Fuzzy Logic.
- 5. Implement the problem of max-min composition using fuzzy logics.
- 6. To find the solution of the function Maximize, given the constraints using GA approach

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the concept of soft computing techniques and their use to solve real life problems.
- 2. Implement various fuzzy logic problems and evaluate their performance.
- 3. Analyze real world problems and identify the soft computing approaches and tools that should be applied.
- 4. Understand the concept of neural networks and their relationship with other learning models.
- 5. Apply various tool and techniques on application domains related to fuzzy, GA.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Jyh-Shing Roger Jang	Neuro fuzzy and soft computing	Pearson Education	1996	978- 0132610667
Kecman	Learning and Soft Computing	Pearson Education	2001	978- 8131703052

George Klir , Bo Yuan	Fuzzy Sets and Fuzzy Logic	РНІ	1995	978- 0131011717
Fu	Neural Network in computer Intelligence	ТМН	2003	978- 0070532823

Course Title: Big Data on Cloud (Specialization: Cloud Computing)

	-		TD //C	~	***/****	mom . v
	L	T	P/S	S	W/FW	TOTAL
Course Contents/syllabuse						CREDIT
Course Contents/syllabus:						UNITS
	3	0	2		0	4
						Teaching
						Hours
Unit I: Introduction to Big data:						11 H
Introduction to Big Data and its importance, Big Data c	harac	cterist	ics, tvn	es		
of Big Data, Traditional vs. Big Data business approac						
for Big Data, Big data Analytics, Algorithm Using Ma						
Vector Multiplication by Map-Reduce	ар го	aucc,	Mulin			
Unit II: – Architecture Components:						12 H
Massively Parallel Processing (MPP) Platforms,	Unst	ructu	red Da	ata		
Analytics and Reporting: Search and Count, Context-Search						
Specific Searches, Categories and Ontology, Qualitative						
Privacy Protection, Real-Time Adaptive Analytics and I		•				
Unit III: Analysis of data at Rest:			<u> </u>			10 H
Hadoop analytics: Limitations of existing distributing	g sys	stems	Hado	op		
Approach, Hadoop Architecture, Distributed file system				•		
Internals of Hadoop MR engine, Need for High level la						
PIG						
Unit IV: Mining Data Streams:						12 H
Stream Data Mode 1 and Management Stream Source, S	Stream	m Qu	eries, a	nd		
issues, Sampling Data in a Stream, Filtering Streams, Counting Distinct						
Elements in a Stream, Estimating Moments, Counting Ones in a Window,						
Decaying Windows Link Analysis: Page Ranking in v						
Efficient Computation of PageRank using MapI						
approaches.						

List of Experiments (Total:30 Hours)

- 1. Downloading and installing Hadoop; Understanding different Hadoop modes. Startup scripts, Configuration files
- 2. Hadoop Implementation of file management tasks, such as Adding files and directories, retrieving files and Deleting files
- 3. Implement of Matrix Multiplication with Hadoop Map Reduce
- 4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
- 5. Implementation of K-means clustering using Map Reduce.
- 6. Installation of Hive along with practice examples
- 7. Installation of HBase, Installing thrift along with Practice examples
- 8. Patrice importing and exporting data from various data bases

Course Learning Outcomes: After studying this course students will be able to:

- Describe the concepts and technologies of big data analytics
 Apply the techniques in handing and analysis of big data.
 Demonstrate cloud frameworks and technologies.

- 4. Describe and apply fine data intensive computing
- 5. Demonstrate cloud applications

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
DT Editorial Services	Big Data, Black Book: Covers Hadoop 2, MapReduce	Dreamtech Press	2016	978-8184891430
Vignesh Prajapati	Big Data Analytics with R and Hadoop	Packt Publishing	2013	978-1782163282
Sourabh Mukherjee , Amit Kumar Das , Sayan Goswami	Big Data Simplified	Pearson Education	2019	978-9353435110
Subhashini Chellappan, Seema Acharya	Big Data and Analytics	Wiley	2019	978-8126579518

Course Title: Cyber Forensics (Specialization: Cyber Security)

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4
	_				Tanahina

	0	4
		Teaching
		Hours
Unit I: Introduction to Cybercrime		11 H
Introduction to Cybercrime, Jurisdictional Issues, Quantifying Cybercrime,		
Differentiating Crimes That Use the Net from Crimes That Depend on the		
Net, Standard Definition of Cybercrime, Categorizing Cybercrime,		
Prioritizing Cybercrime Enforcement, Reasons for Cybercrimes.		
Unit II: Actors involved in Computer Investigation Process		11 H
Understanding Cybercriminals, Profiling and Categorizing Cybercriminals,		
Cyber victims, Cyber investigators by Skill Set. Demystifying		
Computer/Cybercrime, Investigation Startup, and Methodology, Securing		
Evidence, Professional Conduct, Investigating Company Policy Violations,		
Warning Banners, Conducting Forensic Investigation, The Investigation		
Process.		
Unit III: Acquiring, Duplicating and Recovering Deleted Files		11 H
Recovering Deleted Files and Deleted Partitions, recovering "Deleted" and		
"Erased" Data, Data Recovery in Linux, Data Acquisition and Duplication,		
Data Acquisition Tools, Recovering Data from Backups, Finding Hidden		
Data, Locating Forgotten Evidence, Data Recovery Techniques		

Unit IV: Collecting and Preserving Evidence and Building the	12 H
Cybercrime Case	
Defining Evidence, Role of Evidence in a Criminal Case, Forensic	
Examination Standards, Collecting Digital Evidence, Evidence Collection,	
Preserving Digital Evidence, Preserving Volatile Data, Computer Forensic	
Information, Understanding Legal Issues, Major Factors Complicating	
Prosecution, Difficulty of Defining the Crime, Jurisdictional Issues, Human	
Factors, The Investigative Process	

List of Experiments (Total:30 Hours)

- 1. Study of Computer Forensics and different tools used for forensic investigation
- 2. How to Recover Deleted Files using Forensics Tools
- 3. Study the steps for hiding and extract any text file behind an image file/ Audio file using Command Prompt.
- 4. How to Extract Exchangeable image file format (EXIF) Data from Image Files using Exifreader Software
- 5. How to make the forensic image of the hard drive using EnCase Forensics.
- 6. How to Restoring the Evidence Image using EnCase Forensics
- 7. How to Collect Email Evidence in Victim PC
- 8. How to View Last Activity of Your PC
- 9. Find Last Connected USB on your system (USB Forensics)
- 10. Comparison of two Files for forensics investigation by Compare IT software

Course Learning Outcomes: After studying this course students will be able to:

- 1. Familiarize with cybercrime& forensics ontology
- 2. Analyze & demonstrate the crime scene and criminology.
- 3. Redesign the crime scene using digital investigation process
- 4. Recovery of evidence and creating document for judicial proceedings.
- 5. Understand the Legal Issues faced during the investigation process

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Shinder L. D., Cross M.	Scene of the Cybercrime	Syngress	2008	978- 1597492768
Marcella J. A., Guillossou F.	Cyber Forensics: From Data to Digital Evidence	Wiley	2012	978- 1118273661
Nina Godbole, Sunit Belapure,	Cyber Security	Wiley	2011	978- 8126521791
Marcella J. A., Menendez D.	Cyber Forensics: A Field Manual for Collection, Examining and preserving Evidence of computer crimes	Auerbach Publication	2010	978- 0849383281

Course Title: FUNDAMENTALS OF DATA SCIENCE AND ANALYTICS (Specialization: Data Science)

Course Contents/syllabus:	se Contents/syllabus:		S	W/FW	TOTAL CREDIT UNITS	
	3	0	2		0 %ge	4 Tooching
					%ge	Teaching Hours
Unit I: INTRODUCTION TO DATA SCIENCE					15%	8 H
Need for data science – benefits and uses – facets of process – setting the research goal – retrieving data – cle and transforming data – exploratory data analysis – presenting and building applications.	eansi	ng, in	tegratir	ıg,		
Unit II: DESCRIPTIVE ANALYTICS & STATISTICS	IN	FER	ENTIA	L	35%	19 H
Frequency distributions – Outliers –interpreting distributions – graphs – averages - describing variability – interquartile range – variability for qualitative and ranked data - Normal distributions – z scores –correlation – scatter plots – regression – regression line – least squares regression line – standard error of estimate – interpretation of r2 – multiple regression equations – regression toward the mean. Populations – samples – random sampling – Sampling distribution- standard error of the mean - Hypothesis testing – z-test – z-test procedure –decision rule – calculations – decisions – interpretations - one-tailed and two-tailed tests – Estimation – point estimate – confidence interval – level of confidence – effect of sample size						
Unit III: ANALYSIS OF VARIANCE					25%	12 H
t-test for one sample – sampling distribution of t – t-test procedure – t-test for two independent samples – p-value – statistical significance – t-test for two related samples. F-test – ANOVA – Two-factor experiments – three f-tests – two-factor ANOVA –Introduction to chi-square tests.						
Unit IV: PREDICTIVE ANALYTICS					25%	13 H
Linear least squares – implementation – goodness of t model – weighted resampling. Regression using Stats regression – nonlinear relationships – logistic regre parameters – Time series analysis – moving averages serial correlation – autocorrelation. Introduction to surv	Modession - m	dels – n – e issing	multip estimati values	ole ng		

List of Experiments (Total:30 Hours)

- 1. Perform linear regression using a dataset.
- 2. Perform data pre-processing techniques on real datasets.
- 3. Analyze behavior of customers for any online purchase model.
- 4. Implement performance evaluation of compared models for real-life dataset.
- 5. Automate email classification task.
- 6. Analyze twitter data for real and fake news.
- 7. Implement data frames for collection of series.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain the data analytics pipeline.
- 2. Perform statistical inferences from data.
- 3. Analyze the variance in the data.
- 4. Build models for predictive analytics.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
David Cielen, Arno D. B. Meysman, and Mohamed Ali	Introducing Data Science	Manning Publications	2016	978-9351199373
Robert S. Witte and John S. Witte	Statistics	Wiley	2017	978-1119254515
Jake Vander Plas,	Python Data Science Handbook: Essential Tools for Working with Data	O' Reilly Media	2016	978-1491912058

$Course\ Title\hbox{:}\ IOT\ Architecture\ and\ its\ Protocols\ (Specialization\hbox{:}\ IOT\ \&\ Blockchain)$

Course Contents/syllabus:			17.5			CREDIT UNITS
		0	4			
						Teaching
						Hours
Unit I:Overview						12 H
IoT-An Architectural Overview- Building an archite	ecture	, Ma	in desi	gn		
principles and needed capabilities, An IoT architectur	e ou	tline,	standar	ds		
considerations. M2M and IoT Technology Fundame						
gateways, Local and wide area networking, Busines	s pro	cesse	s in Io	T,		
Everything as a Service(XaaS)	•					
Unit II: - Reference Architecture						12 H
IoT Architecture-State of the Art – Introduction, Re	ferer	ice M	Iodel a	nd		
architecture, IoT reference Model - IoT Refer	ence	Arc	hitectu	re-		
Introduction, Functional View, Information View,	De	ployn	nent a	nd		
Operational View, Real-World Design Constraints, Technical Design						
constraints, Data representation and visualization, Interaction and remote						
control.						
Unit III:- IoT Data Link Layer, Network Layer, Transport Layer						11 H
Protocols		-				

L T P/S SW/FW TOTAL

	PHY/MAC Layer (3GPP MTC, IEEE 802.11, IEEE 802.15), Wireless	
	HART, ZWave, Bluetooth Low Energy, Zigbee Smart Energy, DASH7 -	
	Network Layer-IPv4, IPv6, 6LoWPAN, 6TiSCH, ND, DHCP, ICMP, RPL,	
	CORPL, CARP, Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)-	
	(TLS, DTLS)	
	Unit IV: Session Layer and Service Layer protocols & security	10 H
ĺ	Session Layer- HTTP, CoAP, XMPP, AMQP, MQTT, Service Layer -	
	oneM2M, ETSI M2M, OMA, BBF – Security in IoT Protocols – MAC	
	802.15.4, 6LoWPAN, RPL, Application Layer	

List of Experiments (Total:30 Hours)

- 1. Introduction to IoT architecture.
- 2. Use a simulator or design a prototype to demonstrate M2M technology.
- 3. Practical implementation of Everything as a Service (XaaS).
- 4. Design a real-world project to study a real world constraint and technical design constraints
- 5. Write a practical to study Wireless HART, ZWave

Course Learning Outcomes: After studying this course students will be able to:

- 1. Differentiate M2M and IoT Analytics.
- 2. Identify the IoT Reference Architecture and Real-World Design Constraints
- 3. Understand the security issues in IoT protocols
- 4. Utilize various IoT Protocols (Datalink, Network, Transport, Session, Service)
- 5. Specify the technical design constraints at remote locations.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Aves and Stamatis Karnouskos, David Boyle	From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence	Academic Press	2014.	978- 0124076846
Peter Waher	Learning Internet of Things	PACKT publishing	2015	978- 1783553532.
Daniel Minoli	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications	Willy Publications	2013	978- 1118473474
Vijay Madisetti, Arshdeep Bahga	Internet of Things (A Hands- on Approach)	VPT	2015	978- 8173719547

Course Title: Quantum Computing and Machine Learning (Specialization: Quantum **Computing**)

Course Contents/syllabus:	L	Т	P/S	S	W/FW	TOTAL CREDIT UNITS
	3	0	2		0	4
						Teaching Hours
Unit I: Introduction						10 H
Forms of quantum computing, Quantum Computing: Abstraction Levels, Quantum Circuit, Quantum Operators, Single-qubit operators, Multi-qubit operators, Quantum State, Quantum Evolution, Quantum Measurement, POVM Operators, Density Operators						
Unit II: Data Encoding						11 H
Data Representations, Basis encoding, Amplitude encoding, Dynamic encoding, Angle encoding, Qsample Encoding, QuAM encoding, Divide-and-conquer encoding, Decoherence, Quantum Supremacy, Quantum Annealing						
Unit III: Quantum Fourier Transform and Related Algorithms						12 H
Quantum Fourier Transform, Quantum Phase estimation, Expectation Values, Shor's Period Finding Algorithm and Factoring, Hidden Subgroup Problem, Quantum Random Access Memory, Quantum Support Vector Machines, Adiabatic quantum computing						
Unit IV: Quantum Machine Learning					12 H	
HHL Algorithm, HHL, Quantum Linear Regression, C Subroutine, Swap Test Implementation, Quantum C Calculation, Quantum K-Means Clustering, Quantum P Analysis, Quantum Support Vector Machines, variations	Eucli rinci	dean pal Co	Distan ompone	ce		

List of Experiments (Total:30 Hours)

- 1. Implement Quantum Fourier Transform.
- 2. Execute Quantum phase implementation and phase estimation.
- 3. Execute quantum enhanced support vector machine.
- 4. Write a program for quantum K-means clustering.
- 5. Write a program visualize multidimensional data with quantum computing.6. Write a program for multi-class classification with quantum computing.
- 7. Write a program for variational quantum classifier.
- 8. Implement HHL algorithm.
- 9. Implement SVM algorithm.
- 10. Implement variational quantum classifier.

Note: Phyton Cirq and Qiskit may be used for implementation

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand Principles of Quantum Computing
- 2. Comprehend the differences between Conventional Computing & Quantum Computing.
- 3. Analyze various types of Quantum Computing Algorithms
- 4. Implement applications of Quantum Computing in Machine Learning.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Peter Wittek	Quantum Machine Learning: What Quantum Computing Means to Data Mining	ntum Computing Press		978-0128100400
Siddhartha Bhattacharyya	Quantum Machine Learning	De Gruyter; 1st edition	2020	978-3110670646
Santanu Ganguly	Quantum Machine Learning: An Applied Approach	Apress Berkeley, CA	2021	978-1-4842- 7098-1
Frank Zickert	Hands-On Quantum Machine Learning With Python	Independent	2021	979-8516564499

Course Title: Introduction to NoSQL Database (Specialization: Full Stack Development)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL CREDIT UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Introduction to NoSQL Databases and its types	11 H
Overview of NoSQL databases, Characteristics of NoSQL databases, Advantages and disadvantages of NoSQL databases, Comparison with traditional relational databases, Document-oriented databases, Key-value databases, Column-family databases, Graph-based databases	
Unit II: Comparison with other databases and challenges	12 H
Comparison of relational databases to new NoSQL stores, MongoDB, Cassandra, HBASE, Neo4j use and deployment, Application, RDBMS approach, Challenges NoSQL approach	
Unit III: NoSQL Data Models	12 H

JSON and BSON data models, Querying NoSQL databases, Indexing in NoSQL databases, Replication and sharding, MapReduce on databases. Distribution Models, Single Server, Sharding, Master-Slave Replication, Peer-to-Peer Replication, Combining Sharding and Replication	
Unit IV: NoSQL Platforms and Tools	10 H
MongoDB, Cassandra, Couchbase, Neo4j, Riak, HBase, DynamoDB, Redis	

List of Experiments (Total:30 Hours)

Lab Experiment 1: Installing and Configuring MongoDB

Lab Experiment 2: Creating and Querying MongoDB Database

Lab Experiment 3: Installing and Configuring Cassandra

Lab Experiment 4: Creating and Querying Cassandra Database

Lab Experiment 5: Installing and Configuring Couchbase

Lab Experiment 6: Creating and Querying Couchbase Database

Lab Experiment 7: Installing and Configuring Neo4j

Lab Experiment 8: Creating and Querying Neo4j Database

Lab Experiment 9: Comparing NoSQL Database Performance with Traditional Relational Database

Lab Experiment 10: Designing and Implementing a NoSQL Database Project

Course Learning Outcomes: After studying this course students will be able to:

- 1. Analyze the characteristics of NoSQL databases and their applications in real-world scenarios.
- 2. Evaluate the various types of NoSQL databases and choose the appropriate type based on the requirements of the application.
- 3. Design, implement, and query NoSQL databases using different NoSQL platforms and tools.
- 4. Compare and contrast the features and performance of NoSQL databases with traditional relational databases.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
Martin Fowler and Pramod J. Sadalage	NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence	Addison-Wesley Professional	2012	978-0321826626

Luc Perkins, Eric Redmond, and Jim Wilson	Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement	Pragmatic Bookshelf	2012	978-1934356920
Dan Sullivan	NoSQL for Mere Mortals	Pearson Education	2015	978-0134023212
Kristina Chodorow	MongoDB: The Definitive Guide	O'Reilly Media	2013	978-1449344689

Course Title: Natural Language Processing (Specialization: AI & ML)

Course Contents/syllabus:	L	Т	P/S	SV	V/FW	TOTAL CREDIT
	3	0	2		0	UNITS 4
		-	Teaching Hours			
Unit I: Introduction						10 H
Introduction to NLP, Brief origin, Challenges, Motiva	tions	, App	lication	ıs,		
NLP tasks: syntax, semantics, and pragmatics.						
Unit II: Morphology and Language models						12 H
Inflectional and Derivation Morphology, Morphology	gical	Ana	lysis a	nd		
Generation using finite state transducers			•			
POS Tagging and Language Modelling: The role of	f lan	guage	e mode	ls.		
Simple N-gram models. Estimating parameters and sm	oothi	ing. E	valuati	ng		
language models.						
Unit III: Parsing and Semantics						12 H
Introduction to phrases, clauses and sentence structu	re, v	ariou	s parsi	ng		
techniques: (shift-reduce, chart, Shallow, Statistical), So	cope	Ambi	guity a	nd		
Ambiguity resolution, Approaches to discourse, generation.						
Semantic Analysis: Lexical semantics& word-sense disambiguation.						
Compositional semantics. Thematic Role, Semantic Role Labeling and						
Semantic Parsing.						
Unit IV: Machine Translation and Applications						11 H
Machine Translation (Issues in MT, various MT approaches: Direct, Rule-						
Based, Knowledge Based, Statistical). NLP aapplications: Sentiment						
analysis, Information Extraction etc.						

List of Experiments (Total:30 Hours)

- 1. Install Python and understand NLTK toolkit.
- To implement and familiarize with the APIs provided by the NLTK python.
 To practice various functions applied on text strings.
- 4. To write a function to generate bigrams in a text.

- 5. To write a function to generate collocations.
- 6. To write a program to construct dictionary from words from text of book of nltk.
- 7. To use concordance, similar, common context, FreqDist functions of nltk toolbox.
- 8. To write functions to compute lexical diversity of text, tokenize text.
- 9. From user provided text generate collocations and check your result using statistical test. (Assume consecutive words as bigrams.)
- 10. Generate POS tagging using function pos_tagging(). Use the nltk list for your own tagging.
- 11. To test RE for finding verbs forms of a word. (inflextions).
- 12. To test RE for finding adjectives forms of a word. (inflextions).

- 1. Understand the concept of natural language processing, various challenges and applications.
- 2. Acquire knowledge about various morphological forms and selecting a suitable language modelling technique.
- 3. Understand and apply various parsing techniques after having a knowledge of semantics.
- 4. Comprehend the use of machine translation and distinguish between its approaches.
- 5. Design and implement the NLP concepts on real life applications.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Jurafsky D. and Martin H. J	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition	Prentice Hall	2014	978-0131873216
Manning and Schutze	Foundations of Statistical Natural Language Processing	MIT Press	1999	978-0262133609
Steven Bird, Ewan Klein, Edward Loper	Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit	O'Reilly	2009	978-0596516499
Dipanjan Sarkar	Text Analytics with Python	Apress	2019	978-1484243534

Course Title: Cloud Application Development and Deployment (Specialization: Cloud Computing)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	2	0	4

	Teaching
	Hours
Unit I: Cloud Based Applications:	10 H
Introduction, Contrast traditional software development and development	
for the cloud. Public v private cloud apps. Understanding Cloud ecosystems	
- what is SaaS/PaaS, popular APIs, mobile.	
Unit II: - Designing Code For The Cloud:	11 H
Class and Method design to make best use of the Cloud infrastructure; Web	
Browsers and the Presentation Layer: Understanding Web browsers	
attributes and differences. Building blocks of the presentation layer: HTML,	
HTML5, CSS, Silverlight, and Flash.	
Unit III: Web Development Techniques And Frameworks:	12 H
Building Ajax controls, introduction to Javascript using JQuery, working	
with JSON, XML, REST. Application development Frameworks e.g., Ruby	
on Rails, .Net, Java API's or JSF; Deployment Environments – Platform as	
A Service (PAAS), Amazon, VMForce, Google App Engine, Azure,	
Heroku, AppForce	
Unit IV: Cloud Deployment Techniques	12 H
Cloud Deployment Techniques: Factors for Successful Cloud Deployment	
- Network Requirements - Potential Problem areas in a cloud Network and	
their Mitigation – Cloud Network Topologies. Automation and Self-service	
feature in a cloud -cloud performance. Comparison of Various Cloud	
Deployment models	

- 1. Apply the security model for cloud application with network, data and security considerations
- 2. Develop an information security framework model for cloud operation
- 3. Building an application using the lamp stack
- 4. Developing and deploying an application in the cloud.
- 5. Analyze a real-world problem and develop a cloud/lamp-based software solution.
- 6. Deploy a Web Application on AWS
- 7. Deploying VM on Open Stack platform
- 8. Building applications on VM in open stack platform

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the applications of cloud computing
- 2. Develop an application in Cloud.
- 3. Describe various Cloud Deployment models and differentiate the various models.
- 4. Illustrate private cloud deployment key features
- 5. Analyze the various cloud service providers on the basis of requirements and constraints

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Gautam Shroff	Enterprise Cloud Computing Technology Architecture Applications	Cambridge University Press;	2010	978- 0521137355

Thomas Erl, Zaigham Mahmood, and Ricardo Puttini	Cloud Computing Concepts, Technology & Architecture	Prentice Hall	2013	
Greg Schulz	Cloud and Virtual Data Storage Networking	Auerbach Publications	2012	978- 1439851739
Rajkumar Buyya, James Broberg, Andrzej M. Goscinski	Cloud Computing: Principles and Paradigms	Wiley	2011	978- 0470887998

Course Title: Risk Analysis & Assessment (Specialization: Cyber Security)

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4
					TD 1.

	3	0	2		0	4
						Teaching
						Hours
Unit I: Introduction						12 H
Cybersecurity risk Terminologies, position of risk analy				ent		
in relation to the other components of a cybersecurity pr						
Principles: Assets, vulnerabilities, threats, threat						
Management of risks compared to simple acceptant	ce. I	Risk	treatme	ent		
options: avoidance, mitigation, transfer, acceptance.						
Unit II: Assets and Vulnerabilities						11 H
Assets: Tangible and intangible assets in the cyber	worl	d (ha	ardware	e /		
software / data, classification, criticality analysis, depend	lencie	es, po	tential	for		
critical national infrastructure.						
Vulnerabilities: Sources of cyber vulnerability, com						
software, attack surface of modern systems, development of software for						
functionality and not with security considerations, zero-day system			em			
vulnerabilities, vulnerability databases and open information.						
Unit III: Threats and Risk analysis						11 H
Threats: Cyber threat categorization, sources, motivation	ı, typ	e, tec	hnical	vs.		
non-technical, threat actors, exploitation of cyber vulne	rabil	ities l	eading	to		
impact and associated likelihood.						
Risk analysis: Risk as a combination of possible impact of						
a vulnerability and its probability, evaluation of cyber r						
qualitative and quantitative risk analysis, pre-requisi			eaning	ful		
quantitative cyber risk assessment, methodologies, risk register.						11.77
Unit IV: Risk management and Assessment					11 H	
Risk management/ Assessment: Risk evaluation, Risk						
treatment options, risk avoidance, mitigation, transfer, acceptance, risk						
management as an iterative process, risk profile stemming from						
modifications in an organisation's environment, building						
cybersecurity control environment from the results	ot	risk	analys	S1S,		
cybersecurity controls.						

- 1. Perform. a Simple Risk Assessment
- 2. Conduct a risk assessment Case Study
- 3. Analyze various formal Risk Assessment Tools
- 4. Perform log parsing to identify risks.
- 5. Analyze some of the cyber-attacks like ransomware and data leaks.

Course Learning Outcomes: After studying this course students will be able to:

- 1. To understand and apply principles of risk analysis and assessment and their benefits.
- 2. Acquire understanding of terminologies of risk, analysis, management, vulnerability, threats, actors, impact, etc.
- 3. Perform a complete risk assessment.
- 4. Distinguish between various of different risk assessment/management methodologies and assets.
- 5. Evaluate and select appropriate risk treatment options according to the combination of impacts.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Evan Wheeler	Security Risk Management: Building an Information Security Risk Management Program from the Ground Up	Syngress	2011	978- 1597496155
Douglas W. Hubbard and Richard Seiersen	How to Measure Anything in Cybersecurity Risk	Audible Studios	2016	978- 1536669749
Anne Kohnke and Dan Shoemaker	The Complete Guide to Cybersecurity Risks and Controls	Auerbach Publications	2016	978- 1498740548
Carl Young	Metrics and Methods for Security Risk Management	Syngress	2010	978- 1856179782

Course Title: Big Data Analytics (Data Science)

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4
					_

	Teaching
	Hours
Unit I: Introduction	11 H
Data and Relations, Data Storage and Analysis, Big Data Analytics, Big data	
Architecture, Challenges, Types of Big Data, Characteristics - 5 Vs of Big	
Data, Need of big data frameworks. ETL in Big Data, Structured and	
Unstructured Data	
Unit II: Hadoop	12 H

Introduction to Hadoop, History, Hadoop components, Hadoop EcosystemHDFS, Map-Reduce Programming, Comparison with other system, Working with HDFS Commands. Overview of Spark – Hadoop vs Spark	
Unit III: Map Reduce Programming	12 H
Map Reduce working principle, Map Reduce types and formats, MapReduce	
features, Combiner optimization, Map side join, Reduce Side Join,	
Secondary sorting, Pipelining MapReduce jobs.	
Unit IV: Data Analytics	10 H
Understanding Text Analytics and Big Data, Predictive analysis on	
Big Data, Role of Data analyst. Association and correlation analysis,	
regression models.	

- 1. Implement relevant big data tools and technologies.
- 2. Perform Installation of Hadoop.
- 3. Upload and download a file in HDFS.
- 4. Display last few lines of a file.
- 5. Implement the file management tasks in Hadoop:
- 6. Run a basic word count Map Reduce program to understand Map Reduce Paradigm.
- 7. Write a Map Reduce program that mines weather data

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the need and fundamental concepts related to Big Data.
- 2. Comprehend the concepts of Hadoop, Map-Reduce and HDFS commands.
- 3. Analyse various big data frameworks and technologies.
- 4. Implement some techniques related to data analytics with sample data sets.
- 5. Implement different programs to understand Hadoop architecture.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Seema Acharya, Subhashini Chellapan	Big Data and Analytics	Wiley	2015	978-8126579518
Raj Kamal, Preet Saxena	Big Data Analytics: Introduction to Hadoop, Spark, and Machine- Learning	McGraw- Hill Education	2019	9789353164966.
White T.	Hadoop: The Definitive Guide	O' Reilly Media	2012	978-1-49190163- 2
Donald Miner, Adam Shook,	MapReduce Design Pattern	O'Reilly,	2012	978-1449327170

Course Title: Blockchain Components and Architecture (Specialization: Blockchain & IOT)

	L	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT UNITS
	3	0	2	0	4

	1	Teaching Hours
Unit I: Introduction to Blockchain		11 H
Basic components of blockchain architecture, Digital Money to Distributed		
Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions,		
Privacy. Blockchain Architecture and Design: Basic crypto primitives: Hash,		
Signature, Hashchain to Blockchain, Basic consensus mechanisms		
Unit II: Consensus		11 H
Requirements for the consensus protocols, Proof of Work (PoW), Scalability		
aspects of Blockchain consensus protocols Permissioned Blockchains:		
Design goals, Consensus protocols for Permissioned Blockchains		
Unit III: Hyperledger Fabric		11 H
Hyperledger Fabric (A): Decomposing the consensus process, Hyperledger		
fabric components, Chain code Design and Implementation		
Hyperledger Fabric (B): Beyond Chain code: fabric SDK and Front End,		
Hyperledger composer tool		
Unit IV: Blockchain at different platforms		12 H
Use case 1: Blockchain in Financial Software and Systems (FSS): (i)		
Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance		
Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods,		
visibility, trade/supply chain finance, invoice management, etc.		
Use case 3: Blockchain for Government: (i) Digital identity, land records		
and other record keeping between government entities.		

List of Experiments (Total:30 Hours)

- 1. Introduction to blockchain architecture and its components.
- 2. Basic crypto primitives considered during designing of blockchain
 - ✓ Hash
 - ✓ Signature
 - ✓ Hashchain to Blockchain
- 3. Implementation of Proof of work (PoW)
- 4. Implementation of permissioned blockchain using Consensus protocols
- 5. Implementation of Decomposing the consensus process
- 6. Implementation of Hyperledger composer tool
- 7. Implementation of Blockchain in Financial Software and Systems
- 8. Implementation of Blockchain in trade/supply chain
- 9. Implementation of Blockchain for Government

Course Learning Outcomes: After studying this course students will be able to:

- 1. Familiar with the Blockchain, which is fundamentally a public digital ledger to share information in a trustworthy and secure way.
- 2. Applicate Blockchain in cryptocurrencies to various other domains, including business process management, smart contracts, IoT and so on.
- 3. Learn about fundamental design and architectural primitives of Blockchain, the system and the security aspects, along with various use cases from different domains.
- 4. Implement various consensus protocols in blockchain designing
- 5. Decompose and compose the consensus processes

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Andreas Antonopoulos	Mastering Bitcoin: Unlocking Digital Cryptocurrencies	O, Reilly	2014	978- 1449374044
Singh Arun, Jerry Cuomo, Nitin Gaur	Blockchain for Business	Addison- Wesley Professional	2019	978- 0135581360
Nakul Shah	Blockchain For Business with Hyperledger Fabric: A Complete Guide To Enterprise Blockchain Implementation Using Hyperledger Fabric	ВРВ	2019	978- 9388511650
Chandramouli Subramanian	Blockchain Technology	Universities Press (India)	2020	978- 9389211634

Course Title: Quantum Computing with Information Theory (Specialization: Quantum Computing)

	L	T	P/S	S	W/FW	TOTAL
						CREDIT
Course Contents/syllabus:						UNITS
	3	0	2		0	4
						Teaching
						Hours
Unit I: Introduction						10 H
Introduction and IBM Quantum Perspective, Q Missio	n in	India	– Invit	ed		
talk, Quantum Computing Applications, Quantum	Com	puting	g Basic	cs,		
Quantum Measurements Density			Matric	es		
Positive-Operator Valued Measure						
Unit II: Quantum Composer						12 H
IBM Quantum Composer and Quantum Lab using Qiski	it, Siı	mon's	5			
Algorithm, Grover's Algorithm, Fragility of quantum						
information: Decoherence, Quantum Superposition and	Enta	nglen	nent,			
Quantum Gates and Circuits						
Unit III: Quantum Algorithms						11 H
No cloning theorem & Quantum Teleportation, Bell's	s ine	qualit	y and	its		
implications, Quantum Algorithms & Circuits, Deutsch		•	•			
algorithms, Grover's Search Algorithm, Quantum Fourier Transform						
Unit IV: Quantum Error Correction						12 H
Quantum Error Correction, NISQ era Quantum Algori	thms	(VQ	E/QAC)A		
and industrial applications), Quantum Error Correction						
Quantum Cryptography, Implementing Quantum Co						
fidelity, Scalability in quantum computing, NMR Qu						
Spintronics and QED			proach	_		
		•	•			

- 1. Implement and understand Decision Tree Algorithm.
- 2. Implement and understand K-NN Algorithm.
- 3. Execute quantum enhanced support vector machine.
- 4. Write a program for quantum Hierarchical clustering.
- 5. Write a program visualize n-dimensional data with quantum computing.
- 6. Write a program for binary-class classification with quantum computing.
- 7. Write a program for variational quantum classifier using machine learning algorithm.
- 8. Write a program to simulate the behavior of qubits in a superposition state and observe the probabilities of the qubit collapsing into one of the basis states upon measurement.
- 9. Implement the protocol of quantum teleportation using C programming and test the program on different quantum states.
- 10. Study the concept of quantum error correction using the three qubit bit-flip code and implement it using C programming.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand Principles of Quantum Computing
- 2. Comprehend the differences between Conventional Computing & Quantum Computing.
- 3. Analyze various types of Quantum Computing Algorithms
- 4. Implement applications of Quantum Computing in Machine Learning.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Phillip Kaye, Raymond Laflamme	An introduction to Quantum Computing	Oxford University press	2007	019857049X
Chris Bernhardt	Quantum Computing for Everyone	The MIT Press	2020	0262039257
M. A. Nielsen &I.Chuang	Quantum Computation and Quantum Information	Cambridge University Press	2013	9781107002173
Frank Zickert	Hands-On Quantum Machine Learning With Python	Independent	2021	979-8516564499

Course Title: Big Data Analytics (Specialization: Full Stack Development)

Course Contents/syllabus:					
	3	0	2	0	4
			I		Teaching Hours
Unit I: Introduction					11 H
Data and Relations, Data Storage and Analysis, Big Data Architecture, Challenges, Types of Big Data, Characte Data, Need of big data frameworks. ETL in Big D Unstructured Data	ristic	s - 5	Vs of E	Big	
Unit II: Hadoop					12 H
Introduction to Hadoop, History, Hadoop cor EcosystemHDFS, Map-Reduce Programming, Com- system, Working with HDFS Commands. Overview of Spark	pariso	on w	ith otl	ner	
Unit III: Map Reduce Programming					12 H
Map Reduce working principle, Map Reduce types and features, Combiner optimization, Map side join, Secondary sorting, Pipelining MapReduce jobs.					
Unit IV: Data Analytics					10 H
Understanding Text Analytics and Big Data, Predictive	analy	sis o	n		
Big Data, Role of Data analyst. Association and c regression models.	correl	ation	analys	sis,	

P/S

SW/FW

TOTAL CREDIT UNITS

List of Experiments (Total:30 Hours)

- 1. Implement relevant big data tools and technologies.
- 2. Perform Installation of Hadoop.
- 3. Upload and download a file in HDFS.
- 4. Display last few lines of a file.
- 5. Implement the file management tasks in Hadoop:
- 6. Run a basic word count Map Reduce program to understand Map Reduce Paradigm.
- 7. Write a Map Reduce program that mines weather data

- 1. Understand the need and fundamental concepts related to Big Data.
- 2. Comprehend the concepts of Hadoop, Map-Reduce and HDFS commands.
- 3. Analyse various big data frameworks and technologies.
- 4. Implement some techniques related to data analytics with sample data sets.
- 5. Implement different programs to understand Hadoop architecture.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Seema Acharya, Subhashini Chellapan	Big Data and Analytics	Wiley	2015	978-8126579518
Raj Kamal, Preet Saxena	Big Data Analytics: Introduction to Hadoop, Spark, and Machine- Learning	McGraw- Hill Education	2019	9789353164966.
White T.	Hadoop: The Definitive Guide	O' Reilly Media	2012	978-1-49190163- 2
Donald Miner, Adam Shook,	MapReduce Design Pattern	O'Reilly,	2012	978-1449327170

Course Title: Blockchain Technology

		T	P/S	SW/FW	TOTAL
Course Contents/sullabus					CREDIT
Course Contents/syllabus:					UNITS
	3	0	0	0	3
					Teaching
					Hours
Unit I: Introduction					15 H

Blockchain- Public Ledgers, Blockchain as Public Ledgers -Bitcoin, Blockchain 2.0, Smart Contracts, Block in a Blockchain, Transactions-Distributed Consensus, The Chain and the Longest Chain - Cryptocurrency to Blockchain 2.0 - Permissioned Model of Blockchain, Cryptographic - Hash Function, Properties of a hash function-Hash pointer and Merkle tree	
Unit II: Bitcoin and Cryptocurrency	15 H
A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay, Consensus introduction, Distributed consensus in open environmentsConsensus in a Bitcoin network	
Unit III: Bitcoin Consensus	15 H
Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW, Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases, Design issues for Permissioned Blockchains, Execute contracts- Consensus models for permissioned blockchain-Distributed consensus in closed environment Paxos	
bioekenam Bistibuted consensus in closed environment i axos	15 H
Unit IV: Blockchain Applications	15 П

- 1. Understand emerging abstract models for Block chain Technology.
- 2. Identify major research challenges and technical gaps existing between theory and practice in crypto currency domain.
- 3. Develop conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.
- 4. Apply Hyperledger Fabric and Ethereum platform to implement the Block chain Application.
- 5. Develop the ability to create crypto currencies and give a strong technical understanding of Block chain technologies with an in-depth understanding of applications, open research challenges, and future directions.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Bashir, Imran	Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks	Packt Publishing	2017	978-1787125445

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder	Bitcoin and cryptocurrency technologies: a comprehensive introduction	Princeton University Press	2016	978-0691171692
Nakul Shah	Blockchain For Business With Hyperledger Fabric: A Complete Guide To Enterprise Blockchain Implementation Using Hyperledger Fabric	BPB Publication	2019	978-9388511650
Joseph Bonneau et al.	SoK: Research perspectives and challenges for Bitcoin and cryptocurrency	IEEE Symposium on Security and Privacy	2015	DOI 10.1109/SP.2015.14

Course Title: Distributed Databases

Course Contents/syllabus:		T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3
					Teaching Hours

	v	
		Teaching
		Hours
Unit I: Introduction		15 H
Distributed data processing: What is a DDBS; Advantages and		
disadvantages of DDBS; Problem areas; Overview of database and computer		
network concepts.		
Transparencies in a distributed DBMS; Distributed DBMS architecture;		
Global directory issue.		
Unit II: Distributed Database Deign		15 H
Alternative design strategies; Distributed design issues; Fragmentation; Data		
allocation.		
View management; Data security; Semantic Integrity Control.		
Objectives of query processing; Characterization of query processors;		
Layers of query processing; Query decomposition; Localization of		
distributed data.		
Unit III: Transaction and Concurrency Control		15 H
Factors governing query optimization; Centralized query optimization;		
Ordering of fragment queries; Distributed query optimization algorithms.		
Factors governing query optimization; Centralized query optimization;		
Ordering of fragment queries; Distributed query optimization algorithms.		
Concurrency control in centralized database systems; Concurrency control		
in DDBSs; Distributed concurrency control algorithms; Deadlock		
management.		
Unit IV: Reliability and Parallel Databases		15 H

Reliability issues in DDBSs; Types of failures; Reliability techniques;	
Commit protocols; Recovery protocols.	
Parallel architectures; parallel query processing and optimization; load	
balancing	
Databases, Distributed Object Management, Multi-databases.	

- 1. Design trends in distributed systems.
- 2. Apply network virtualization in distributed environment.
- 3. Apply remote method invocation and objects.
- 4. Understand the concepts of parallel databases.
- 5. Get insight on Transaction and Concurrency control mechanisms.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
M.T. Ozsu and P. Valduriez	Principles of Distributed Database Systems	Springer	2019	978- 3030262525
D. Bell and J. Grimson	Distributed Database Systems	Addison- Wesley	1992	978- 0201544008
Stefano Ceri, Giuseppe Pelagatti	Distributed Databases: Principles and Systems	Mc Graw Hill	2017	978- 0070265110
Judith Hurwitz, Robin Bllor, Marcia Kaufman, Fern Halper	Cloud Computing for dummies	Wiley	2009	978- 8126524877
Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi	Mastering Cloud Computing	Mc Graw Hill	2017	978- 1259029950

Course Title: Network Security

Course Contents/syllabus:		T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3
					Teaching

	Teaching
	Hours
Unit I: Introduction	15 H
Internet Architecture Vulnerabilities, Network Security Terminology:	
Identification, Confidentiality, Authentication, Authorization, Access	
Control, Integrity, Non-Repudiation, Freshness, and Availability, Network	
Threats and Types of attacks, Introduction to malwares.	

Unit II: Cryptography	15 H
Symmetric Cipher Model, Classical Cryptographic Algorithms:	
Monoalphabetic Substitutions such as Caesar Cipher, Cryptanalysis of	
Monoalphabetic ciphers; Polyalphabetic Ciphers such as Vigenere, Vernam	
Cipher; Transposition Cipher. Stream and Block Ciphers, Block cipher:	
principles, Data Encryption Standard (DES), Analyzing and Strengthening	
of DES, Introduction to Advance Encryption Standard (AES), modes of	
operations, Concept of Asymmetric Cryptography, Rivets-Shamir-Adleman	
(RSA) Key Generation, Encryption and Decryption Algorithm	
Unit III: Key Management and Hashing	15 H
Solving Symmetric Key Distribution Problem, Diffie-Hellman Algorithm,	
Key Exchange with Public Key Cryptography or Asymmetric Cryptography,	
Digital Envelope, ELGamal Cryptosystem, Public Key Certificate Structure,	
Distribution of Public Key, Certificate Authority	
Hash concept, Hash Function Requirements, Popular Message Digest and	
Hash Algorithms: MD4 and MD5, Secure Hash Algorithms such as SH1 and	
SHA2, Digital Signature, Digital Signature Standard (DSA)	
Unit IV: Authentication, Security and Firewalls	15 H
Basic authentication protocols, concept of Key distribution centre (KDC),	
Needham-Schroeder Authentication Protocol, Kerberos, writing	
authentication protocols using KDC and public key cryptography	
Why IP security: IP security Architecture, Authentication Header,	
Encapsulating Security Payload.	
Web security consideration, Secure Socket Layer Protocol, Transport Layer	
Security, Secure Electronic Transaction Protocol.	
Firewall Design principles, Trusted Systems, Virtual Private Networks.	

- 1. Understand real time systems for identifying security threats.
- 2. Compare public and private cryptographic algorithms and make use of the same for encryption and decryption of messages.
- 3. Design confidential systems with minimum possible threats.
- 4. Apply both cryptography and hashing to create digital signatures and certificates for achieving integrity.
- 5. Understand application of cryptosystems in design of, IPSec, AH, and ESP protocols.

AUTHOR	TITLE Publisher p		Publisher Year of publication	
William Stallings	Cryptography and Network Security - Principles and Practice	Pearson 2017		978- 9332585225
Charles P.Pfleeger	Security in Computing	Pearson	2007	978- 8131727256
Atul Kahate	Cryptography & Network Security	Mc Graw Hill	2017	978- 1259029882

Bruce Schneier	Applied Cryptography: Protocols, Algorithms, and Source Code in C	Wiley	2015	978- 1119096726
William R. Cheswick and Steven M. Bellovin	Firewalls and Internet Security: Repelling: The Wily Hacker	Addison Wesley	1994	978- 0201633573
Rolf Oppliger	Security Technologies for the world wide web	Artech House	2000	978- 1580530453

Course Title: Parallel Computing

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL CREDIT
				UNITS
3	0	0	0	3

	Teaching
Unit I: Introduction	Hours 15 H
Paradigms of parallel computing: Synchronous - vector/array, SIMD,	
Systolic; Asynchronous - MIMD, reduction paradigm.	
Flynn's classifications, Handler's classifications. Software taxonomy: Kung's	
taxonomy, SPMD.	
Unit II: Computation Models and Performance Metrices	15 H
Combinational circuits, Sorting network, PRAM models, Interconnection	
RAMs. Parallelism approaches - data parallelism, control parallelism.	
Laws governing performance measurements. Metrices - speedups,	
efficiency, utilization, communication overheads, single/multiple program	
performances, benchmarks.	
Unit III: Parallel Programming	15 H
Taxonomy and topology - shared memory multiprocessors, distributed	
memory networks. Processor organization - Static and dynamic	
interconnections. Embeddings and simulations.	
Shared memory programming, distributed memory programming, object-	
oriented programming, data parallel programming, functional and dataflow	
programming.	
Unit IV: Scheduling	15 H
Scheduling parallel programs. Loop scheduling. Parallelization of sequential	
programs. Parallel programming support environments.	

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the core concepts and classifications of parallel computing.
- 2. Understand the concept of computation in parallel computing.

- 3. Analyze the performance in parallel computing scenarios.
- 4. Understanding about parallel computing and Programming.
- 5. Analyze various scheduling techniques in parallel computing.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
M. J. Quinn	Parallel Computing: Theory and Practice	Tata McGraw Hill	2017	978- 0070495463
T. G. Lewis and H. El-Rewini	Introduction to Parallel Computing	Prentice Hall	1992	978- 0134989242
T. G. Lewis	Foundations of Parallel Programming: A Machine- Independent Approach	IEEE Computer Society	1994	978- 0818656927

L T P/S SW/FW

TOTAL

Course Title: Ethical Hacking

		_	175		**/*	CREDIT
Course Contents/syllabus:						UNITS
	3	0	0		0	3
		ı				Teaching
						Hours
Unit I: Introduction						15 H
Understanding the importance of security, Concept of	ethic	al ha	cking a	nd		
essential Terminologies-Threat, Attack, Vulnerab	ilities	s, T	arget	of		
Evaluation, Exploit. Phases involved in hacking.						
WAY TO A DAMAGE A						4 = ++
Unit II: Foot Printing & Scanning						15 H
Foot printing: Authoritative, Non -Auth reply by DNS,						
printing, Understanding the information gathering n	netho	dolog	gy of t	he		
hackers, Tools used for the reconnaissance phase.						
Scanning: Detecting live systems on the target network,						
running /listening on target systems, understandi						
techniques, Identifying TCP and UDP services run		on t	he targ	get		
network, Understanding active and passive fingerprinting	ıg.					
Unit III: Hacking						15 H
System Hacking: Aspect of remote password g						
eavesdropping, Various methods of password cracking,						
Understanding Sniffers, Comprehending Active and Pa				RP		
Spoofing and Redirection, DNS and IP Sniffing, HTTPS Sniffing.						
Hacking Wireless Networks: Introduction to 802.11, Role of WEP, Cracking						
WEP Keys, Sniffing Traffic, Securing Wireless Network	ks.					
Unit IV: Cryptography						15 H
Cryptography: Understand the use of Cryptography over				gh		
PKI, RSA, MD-5, Secure Hash Algorithm and Secure S	ocke	t Lay	er.			

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the significance of Ethical Hacking.
- 2. Understand the methods of scanning and looking for footprints,
- 3. Analyze the methods involved in hacking systems and wireless networks.
- 4. Implement cryptography algorithms,
- 5. Understand the security aspects need to be adopted against hacking.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rajat Khare	Network Security and Ethical Hacking	Luniver Press	2006	978- 1905986002
Thomas Mathew	Ethical Hacking	OSB Press	2003	9780972936217
Stuart McClure, Joel Scambray and George Kurtz	Hacking Exposed: Network Security Secrets & Solutions	Tata Mc Graw Hill	2012	978- 0071780285

L T P/S SW/FW

TOTAL

15 H

Course Title: Information Theory and Coding

Unit IV: Convolutional Codes

Course Contents/syllabus:						CREDIT UNITS
	3	0	0		0	3
						Teaching Hours
Unit I: Information Theory						15 H
Information theory: Concept of amount of information	n, inf	orma	tion un	its		
Entropy: marginal, conditional, joint and relative entropentropies Mutual information, information rate,	chai	nnel	capaci	ty,		
redundancy and efficiency of channels Discrete cha channels, Binary Symmetric Channel, Binary Erasure C			-			
Channel, Channel with independent I/O, Cascaded cha	annel	s, rep	etition	of		
symbols, Binary asymmetric channel, Shannon theorem		_				
Unit II: Source Coding						15 H
Source coding – Encoding techniques, Purpose of encocodes, Construction of instantaneous codes, Kraft's efficiency and redundancy, Source coding theorem. Cosource codes – Shannon Fano coding, Shannon Fano Elicoding, Minimum variance Huffman coding, Adaptive Arithmetic coding, Dictionary coding – LZ77, LZ78, Channel coding, Channel coding theorem for DMC.	ineq onstr ias co	uality uctior ding, ıffma	r, Codi n of bas Huffm n codir	ng sic an ng,		
Unit III: Error Detection and Correction						15 H
Codes for error detection and correction – Parity check of codes, Error detecting and correcting capabilities, Godesk matrices, Standard array and Syndrome decoding Cyclic codes – Generator polynomial, Generator and Patencoding of cyclic codes, Syndrome computation a Decoding of cyclic codes, BCH codes, RS codes, Burst	enerang, harity of ending the end of the end	ator a ammi check error	nd Paring cod matriced	ity les es,		

Convolutional codes – Encoding and State, Tree and Trellis diagrams,		
Maximum likelihood decoding of convolutional codes -Viterbi algorithm,		
Sequential decoding -Stack algorithm. Interleaving techniques – Block and		
convolutional interleaving, Coding and interleaving applied to CD digital		
audio system - CIRC encoding and decoding, interpolation and muting. ARQ		
- Types of ARQ, Performance of ARQ, Probability of error and throughput.		

- 1. Quantify the notion of information in a mathematically sound way
- 2. Calculate entropy, joint entropy, relative entropy, conditional entropy, and channel capacity of a system
- 3. Differentiate between lossy and lossless compression techniques
- 4. Decide an efficient data compression scheme for a given information source
- 5. Explain the impact of feedback and/or many senders or receivers on the communication systems

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
T. M. Cover, J. A. Thomas	Elements of Information Theory	Wiley	2006	978- 0471241959
R. Togneri, C.J.S deSilva	Fundamentals of Information Theory and Coding Design	CRC	2003	978- 1584883104
R. J. McEliece	The Theory of Information and Coding	Cambridge Univ. Press	2004	978- 0521831857
R. Bose	Information Theory Coding and Cryptography	Mc Graw Hill	2017	978- 9385880568

Program Structure for B. Tech. CSE Semester VIII

Sr. No.	Course Code	Course Title	Type of course		urs pe veek	er	Credits
				L	Т	P	
1		Specialization –V	Specialization Elective	3	0	2	4
2		Domain Elective -V	Domain Elective Course	3	0	0	3

		Total Credits	Min Required: 23 Semester Credits: 23			
	TOTAL		09 0 10 23			
5	**Industrial Training	NTCC	0	0	0	10
4	**Open Elective -IV	Inter-Disciplinary Elective	3	0	0	3
3	Domain Elective -VI	Domain Elective Course	3	0	0	3

**Students may be given permission to undergo internship for complete 8th semester (or to take early joining in the company) under special circumstances subject to fulfillment of certain conditions (to be decided later on by Hon'ble Vice Chancellor) and approval by Hon'ble Vice Chancellor. Following conditions is mandatory for such cases in addition to conditions set by Hon'Ble Vice Chancellor.

- i. The conduct of the student was good throughout the degree.
- ii. The student is academically good and preformed consistently well during the period he studied in Amity University for the said program.
- iii. The student is ready to fulfill any special requirement put up by the Hon'ble Vice Chancellor to grant the permission.
- **iv.** The internship has been offered by the company of international repute along with preplacement offer (PPO).

Domain Elective V

Digital Image processing Computational Biology Simulation and Modelling

Domain Elective VI

Adhoc and Wireless sensor networks Quantum Computing Computer Vision

Course Title: Deep Learning (Specialization: AI & ML)

Course Contents/syllabus:	L	T	P/S	SW/FW		TOTAL CREDIT UNITS
	3	0	2		0	4
		Teaching				
						Hours
Unit I: Introduction						12 H
Basics of machine learning, Introduction to deep learni	ng, N	Veural	Netwo	rk		
Basics, Linear Classifiers and Gradient Descent, Shallow Neural Networks,						
Deep Neural Networks (creation and training).						

Unit II:	11 H
Autoencoders (standard, denoising, contractive, etc) Variational	
Autoencoders, Properties of CNN representations, Deep Convolutional	
Models	
Unit III:	11 H
Generalization (dropout and convolutional networks), Model sequence data	
using Recurrent Neural Networks (RNNs), Gated Recurrent Units GRU,	
Long Short-Term Memory LSTM. Data representation/feature learning.	
Unit IV:	11 H
Basics of generative adversial networks (GANs), GAN training,	
Synthesizing and manipulating images with GANs., Applications of neural	
networks	

- 1. To implement and practice Python Basics with Numpy
- 2. To implement the learning models using open-source libraries.
- 3. To build a simple classifier in Python.
- 4. To implement Logistic Regression with a neural network mindset
- 5. To practice softwares relevant to deep learning such as Numpy, Matplotlib etc.
- 6. To implement image recognition using convolutional nets.
- 7. To generate text using recurrent nets.
- 8. To work on projects related to deep learning applications.

Course Learning Outcomes: After studying this course students will be able to:

- 1. To understand basic concepts of deep learning.
- 2. To be able to compare and analyse differences between usage of machine learning and deep learning.
- 3. To understand concepts and working of various sequence and generative models and CNNS.
- 4. To learn representations for high-dimensional data, such as images, text and data.
- 5. To implement some of the deep learning open-source libraries for solving real life problems.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Ian Goodfellow and Yoshua Bengio and Aaron Courville,	Deep Learning	MIT Press	2016	978- 0262035613
Charu C. Aggarwal,	Neural Networks and Deep Learning",	Springer	2018	978-3-319- 94462-3
Eugene Charniak	Introduction to Deep Learning	MIT Press	2019	978- 0262039512
Francois Chollet	Deep Learning with Python	Manning Publications.		978- 1617294433

Course Title: Could Security (Specialization: Cloud Computing)

Course Contents/syllabus:						CREDIT UNITS
	3	0	2		0	4
			•			Teaching
						Hours
Unit I: Fundamentals of Cloud Computing						11 H
Introduction to Cloud computing, Understand the	Clou	ıd de	ployme	ent		
models: Public, Private, Community and Hybrid models	. Sco	pe of	Contro	ol:		
SaaS, PaaS, IaaS. Risks and Security Concerns: Comm	non a	ttack	vectors	&		
threats and CSA, NIST and ENISA guidelines for Cloud	l Sec	urity.				
Unit II: Data Protection for Cloud Infrastructure an	d Se	rvices	;			12 H
Understand the Cloud based Information Life Cycle,	Data	prote	ection f	for		
Confidentiality and Integrity, Encryption, Data Redaction, Tokenization,						
Obfuscation, PKI and Key, Management.						
Enforcing Access Control for Cloud Infrastructure based Services: Access						
control for Cloud infrastructure, Enforcing Access Control Strategies:						
Authentication and Authorization, Roles-based Access Control, Multi-factor						
authentication, Host, storage and network access co	ontro	l opt	ions, (OS		

L T P/S SW/FW

TOTAL

10 H

12 H

List of Experiments (Total:30 Hours)

Hardening and minimization, securing remote access.

Introduction to Design Patterns, Understanding Design Patterns Template. Architectural patterns for Cloud Computing: Platform-to-Virtualization &

Cloud Computing Security Design Patterns: Security Patterns for Cloud Computing: Trusted Platform, Geo-tagging, Cloud VM Platform Encryption, Trusted Cloud Resource Pools, Cloud Resource Access Control, Cloud Data Breach Protection, Permanent Data Loss Protection, In-Transit Cloud Data Encryption. Network Security, Identity & Cloud Security Access

Unit III: Cloud Design Pattern

Management & Trust

Virtualization-to-Cloud, Cloud bursting.
Unit IV: Security Design Patterns

- 1. Install VirtualBox/VMware Workstation with different flavors of Linux or windows OS on top of windows 7 or 8.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 5. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 6. Find a procedure to launch virtual machine using try stack (Online Open stack Demo Version).
- 7. Program on various cloud sim.
- 8. Program based on cloud sim in security

Course Learning Outcomes: After studying this course students will be able to:

1. Identify the known threats, risks, vulnerabilities and privacy issues associated with Cloud based IT services.

- 2. Apply the concepts and guiding principles for designing and implementing appropriate safeguards and countermeasures for Cloud based IT services
- 3. Analyze approaches to designing cloud services that meets essential Cloud infrastructure characteristics on demand computing, shared resources, elasticity and measuring usage.
- 4. Design security architectures that assure secure isolation of physical and logical infrastructures including compute, network and storage, comprehensive data protection at all layers.
- 5. Summarize the industry security standards, regulatory mandates, audit policies and compliance requirements for Cloud based infrastructures.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Vic (J.R.) Winkler	Securing The Cloud: Cloud Computing Security Techniques and Tactics	Syngress/Elsevier	2011	978- 1597495929
Thomas Erl	Cloud Computing Design Patterns	Pearson Education India	2015	978- 9332557307
Barrie Sosinsky	Cloud Computing Bible	Wiley-India	2011	978- 8126529803
Ronald L. Krutz, Russell Dean Vines	Cloud Security: A Comprehensive Guide to Secure Cloud Computing,	Wiley	2010	978- 0470589878

Course Title: Could Security (Specialization: Cyber Security)

Course Contents/syllabus:

L T P/S SW/FW TOTAL
CREDIT
UNITS

3 0 2 0 4

	Teaching
	Hours
Unit I: Fundamentals of Cloud Computing	11 H
Introduction to Cloud computing, Understand the Cloud deployment	
models: Public, Private, Community and Hybrid models. Scope of	
Control: SaaS, PaaS, IaaS.	
Risks and Security Concerns: Common attack vectors & threats and CSA,	
NIST and ENISA guidelines for Cloud Security.	
Unit II: Data Protection for Cloud Infrastructure and Services	12 H
Understand the Cloud based Information Life Cycle, Data protection for	
Confidentiality and Integrity, Encryption, Data Redaction, Tokenization,	
Obfuscation, PKI and Key, Management.	
Enforcing Access Control for Cloud Infrastructure based Services:	
Access control for Cloud infrastructure, Enforcing Access Control	
Strategies: Authentication and Authorization, Roles-based Access Control,	
Multi-factor authentication, Host, storage and network access control	
options, OS Hardening and minimization, securing remote access.	
Unit III: Cloud Design Pattern	10 H

Introduction to Design Patterns, Understanding Design Patterns Template. Architectural patterns for Cloud Computing: Platform-to-Virtualization & Virtualization-to-Cloud, Cloud bursting.	
Unit IV: Security Design Patterns	12 H
Cloud Computing Security Design Patterns: Security Patterns for Cloud	
Computing: Trusted Platform, Geo-tagging, Cloud VM Platform	
Encryption, Trusted Cloud Resource Pools, Cloud Resource Access	
Control, Cloud Data Breach Protection, Permanent Data Loss Protection,	
In-Transit Cloud Data Encryption. Network Security, Identity & Cloud	
Security Access Management & Trust	ļ

- 1. Install VirtualBox/VMware Workstation with different flavours of Linux or windows OS on top of windows 7 or 8.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 5. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 6. Find a procedure to launch virtual machine using try stack (Online Open stack Demo Version).
- 7. Hands on practice on CloudSim.
- 8. Program based on cloud sim in security

Course Learning Outcomes: After studying this course students will be able to:

- 1. Identify the known threats, risks, vulnerabilities and privacy issues associated with Cloud based IT services.
- 2. Apply the concepts and guiding principles for designing and implementing appropriate safeguards and countermeasures for Cloud based IT services
- 3. Analyze approaches to designing cloud services that meets essential Cloud infrastructure characteristics on demand computing, shared resources, elasticity and measuring usage.
- 4. Design security architectures that assure secure isolation of physical and logical infrastructures including compute, network and storage, comprehensive data protection at all layers.
- 5. Summarize the industry security standards, regulatory mandates, audit policies and compliance requirements for Cloud based infrastructures.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Vic (J.R.) Winkler	Securing The Cloud: Cloud Computing Security Techniques and Tactics Syngress/Elsevier 2011			978- 1597495929
Thomas Erl	Cloud Computing Design Patterns	Pearson Education India	2015	978- 9332557307
Barrie Sosinsky	Cloud Computing Bible	Wiley-India	2011	978- 8126529803
Ronald L. Krutz, Russell Dean Vines	Cloud Security: A Comprehensive Guide to Secure Cloud Computing,	Wiley	2010	978- 0470589878

$Course\ Title:\ Business\ Intelligence\ and\ Data\ Visualization\ (Specialization:\ Data\ Science)$

L	T	P/S	SW/FW	TOTAL
				CREDIT
				UNITS
3	0	2	0	4

	%ge	Teaching Hours
Unit I: INTRODUCTION TO BUSINESS INTELLIGENCE	25%	12 H
Business Intelligence (BI), Scope of BI solutions and their fitting into existing infrastructure, BI Components and architecture, BI Components, Future of Business Intelligence, Functional areas of BI tools, End user assumptions, setting up data for BI, Data warehouse, OLAP and advanced analytics, Supporting the requirements of senior executives including performance management, Glossary of terms and their definitions specific		
to the field of BI and BI systems. Unit II: ELEMENTS OF BUSINESS INTELLIGENCE SOLUTIONS	25%	13 H
Business Query and Reporting, Reporting, Dashboards and Scorecards Development, Development, Scorecards, Metadata models, Automated Tasks and Events, Mobile Business Intelligence, Software development kit (SDK). Stages of Business Intelligence Projects, Project Tasks, Risk Management and Mitigation, Cost justifying BI solutions and measuring success, BI Design and Development, Building Reports, Building a Report, Drill-up, Drill-down Capabilities.		
Unit III: DATA VISUALIZATION	25%	12 H
Introductions and overview: What Tableau can and cannot do well, Debug and troubleshoot installation and configuration of the software. Creating Your First visualization: Getting started with Tableau Software, Using Data file formats, connecting your Data to Tableau, creating basic charts (line, bar charts, Tree maps), Using the Show me panel Tableau Calculations: Overview of SUM, AVR, and Aggregate features Creating custom calculations and fields, Applying new data calculations to your visualization. Formatting Visualizations: Formatting Tools and Menus, formatting specific parts of the view, Editing and Formatting Axes.		

Manipulating Data in Tableau: Cleaning-up the data with the Data Interpreter, structuring your data, Sorting, and filtering Tableau data, Pivoting Tableau data. Advanced Visualization Tools: Using Filters, Using the Detail panel Using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colours. Creating Dashboards & Stories: Using Storytelling, creating your first dashboard and Story, Design for different displays, Adding interactivity to your Dashboard Distributing & Publishing Your Visualization: Tableau file types,		
Publishing to Tableau Online, sharing your visualization, Printing, and		
exporting. Given a case study : Perform Interactive Data Visualization with Tableau		
Unit IV: INTRODUCTION TO POWER BI	25%	13 H
Describe the Power BI ecosystem, Define Power BI and its relationship with Excel, Discuss the Power BI suite of products, Describe how the Power BI products integrate, Explain the typical analytics process flow, Differentiate between the various data sources, Connect Power BI to a data source, Clean and transform data to ensure data quality, Load the data to the Power BI Data Model, Describe the Power BI ecosystem, Define Power BI and its relationship with Excel, Discuss the Power BI suite of products, Describe how the Power BI products integrate, Explain the typical analytics process flow.		

Course Contents/syllabus:

List of Experiments (Total:30 Hours)

Perform at least 10 exercises on **Tableau and Power BI.** Faculty may choose the and exercises as per syllabus contents market requirements.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Apply quantitative modelling and data analysis techniques to the solution of real-world business problems.
- 2. Understand the importance of data visualization and the design and use of many visual components.
- 3. Learn the basics of troubleshooting and creating charts using various formatting tools.
- 4. Learn basics of structuring data and creating dashboard stories adding interactivity dashboard stories.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Efraim Turban, Ramesh Sharda, Dursun Delen	Decision Support and Business Intelligence Systems	Pearson (9 th Edition)	2010	978-0136107293

Learning Tableau 10 - Business Intelligence and data visualization that brings your business into focus"	Joshua N. Milligan	Ingram short title; 2nd edition	2016	978-1786466358
Tableau Your Data!	Daniel G. Murray	Wiley	2014	978-8126551392
Larissa T. Moss, S. Atre	Business Intelligence Roadmap: The Complete Project Lifecycle of Decision Making	Wesley	2003	978-0201784206
Carlo Vercellis	Business Intelligence: Data Mining and Optimization for Decision Making	Wiley	2003	978-8126541881
David Loshin Morgan, Kaufman	Business Intelligence: The Savvy Manager"s Guide	Morgan Kaufmann Publishers	2003	978-1558609167

Course Title: Public Blockchain: Ethereum (Specialization: IOT & Blockchain)

Course Contents/syllabus:		Т	P/S	S	W/FW	TOTAL CREDIT UNITS
	3	0	2		0	4
						Teaching
						Hours
Unit I: Introduction of Cryptography and Blockchain:						12 H
Introduction to Blockchain, Blockchain Technology Mechanisms &						
Networks, Blockchain Origins, Objective of Blockchain, Blockchain						
Challenges, Transactions And Blocks, P2P Systems, Keys As Identity,						
Digital Signatures, Hashing, and public key cryptosystems, private vs. public						
Blockchain.						
Unit II: Ethereum						11 H

Introduction to Ethereum, Ethereum vs bitcoin, Consensus Mechanisms, How Smart Contracts Work, Meta mask Setup, Ethereum Accounts, Receiving Ether's, concept of a Transaction, Smart Contracts, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain.	
Unit III: Solidity Programming:	11 H
Solidity - Language of Smart Contracts, Installing Solidity & Ethereum	
Wallet, Basics of Solidity, Layout of a Solidity Source File & Structure of Smart Contracts, General Value Types (Int, Real, String, Bytes, Arrays,	
Mapping, Enum, address), Hyperledger	
Unit IV: Cryptocurrency Regulation:	11 H
Stakeholders, Roots of Bit coin, Legal Aspects-Crypto currency Exchange,	
Black Market and Global Economy.	
Applications: Internet of Things, Medical Record Management System,	
Domain Name Service and future of Blockchain.	

- 1. Create a Simple Blockchain in any suitable programming language.
- 2. Naive Blockchain construction,
- 3. Memory Hard algorithm Hashcash implementation,
- 4. Play with Go-Ethereum,
- 5. Smart Contract Construction,
- 6. Use Geth to Implement Private Ethereum Block Chain.
- 7. Create Case study of Block Chain being used in illegal activities in real world.
- 8. Using Python Libraries to develop Block Chain Application.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand and explore the working of Blockchain technology.
- 2. Design principles of Bitcoin and Ethereum.
- 3. Analyze the working of Smart Contracts.
- 4. Understand and analyze the working of Hyperledger.
- 5. Apply the learning of solidity and de-centralized apps on Ethereum.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Andreas Antonopoulos, Gavin Wood	Mastering Ethereum: Building Smart Contracts and DApps	O'Reilly	2018	978- 1491971949
D. Drescher	Blockchain Basics: A Non- Technical Introduction in 25 Steps	Apress	2017	978- 1484226032
Mayukh Mukhopadhyay	Ethereum Smart Contract Development: Build blockchain-based decentralized applications using solidity	Packt Publishing Limited	2018	978- 1788473040

Course Title: Quantum Security (Specialization: Quantum Computing)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL CREDIT
				UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Introduction	11 H
Introduction and overview, Fundamental concepts of quantum information: pure and mixed quantum states, the partial trace, classical-quantum states, generalized measurements, Encrypting quantum bits with the quantum one-time pad, trace distance and its use in security definitions, (min)-entropy, Uncertainty principles as a guessing game	
Unit II: Quantum key distribution protocols	12 H
Introduction to key distribution: the challenge of being correct and secure, Key distribution over a noisy channel, BB84 Protocol, Warmup: Security against a classical eavesdropper, E91 Protocol: purifying protocols using entanglement, Quantum key distribution: definitions and concepts	
Unit III: Quantum cryptography using untrusted devices	13 H
Introduction to device-independent quantum cryptography, Testing devices using a Bell experiment, Security of device-independent quantum key distribution against collective attacks, Two-party cryptography: bit commitment and oblivious transfer, Impossibility of bit commitment, Weak commitments and coin tossing	
Unit IV: Advance Algorithms	10 H
Shor's Algorithm, Finite Field Operations, Karatsuba and Number Theoretic Transformation Based Multiplication, Montgomery Multiplication, Lattice based cryptography algorithm, code based cryptography algorithm	

List of Experiments (Total: 30 Hours)

- 1. Learn how information can be encrypted and sent using quantum algorithms.
- 2. Generate an Encryption Key that Allows for Private Communication.
- 3. Encrypt Transmit, and Decrypt a Secret Message.
- 4. Implement key distribution protocol.
- 5. Examine how an eavesdropper causes errors in transmission and that can be detected.
- 6. Understand and implement Lattice based cryptography algorithm.
- 7. Understand and implement code based cryptography algorithm.
- 8. Implement and understand Shor's Algorithm.
- 9. Use Montgomery Multiplication for real –world application.
- 10. Implement a real-world application of secure quantum keys.

Note: QKDNetSim simulator and python may be used for the implementation. **Course Learning Outcomes:** After studying this course students will be able to:

- 1. Understand the advent of quantum computing in security.
- 2. Comprehend the concepts of public-key cryptography standardization procedure.
- 3. Analyse various cryptographic algorithms.
- 4. Implement post-quantum post-quantum secure public-key algorithms focusing on both key-encapsulation and digital signature.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Debdeep Mukhopadhyay and Rajat Subhra Chakraborty	Hardware Security: Design, Threats, and Safeguards	CRC Press	2014	978-439895832
Daniel J. Bernstein, Johannes Buchmann and Erik Dahmen	Post-Quantum Cryptography	McGraw- Hill Education	2009	978-540887010
Federico Grasselli	Quantum Cryptography	Springer Cham	2021	978-3-030- 64359-1

Course Title: Web Frameworks (Specialization: Full Stack Development)

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL CREDIT UNITS
3	0	2	0	4

	Teaching Hours
Unit I: Introduction to Web Frameworks	6 H
Introduction to web frameworks, Understanding the architecture of web applications, Overview of popular web frameworks, Choosing the right framework for your project.	
Unit II: React	12 H

Introduction to React, creating components in React, State and props in React, Handling events in React, Routing in React, Integrating with backend APIs	
Unit III: Angular	12 H
Introduction to Angular, creating components in Angular, Data binding in Angular, Routing in Angular, Services and dependency injection in Angular, Integrating with backend APIs	
Unit IV: Vue.js, Tools and Technologies	15 H

Experiment 1: Setting up the development environment for React

Experiment 2: Creating a basic React component

Experiment 3: Implementing state and props in React

Experiment 4: Implementing routing in React

Experiment 5: Integrating a React application with a backend API

Experiment 6: Setting up the development environment for Angular

Experiment 7: Creating a basic Angular component

Experiment 8: Implementing data binding in Angular

Experiment 9: Implementing routing in Angular

Experiment 10: Integrating an Angular application with a backend API

Experiment 11: Setting up the development environment for Vue.js

Experiment 12: Creating a basic Vue.js component

Experiment 13: Implementing directives and data binding in Vue.js

Experiment 14: Implementing routing in Vue.js

Experiment 15: Integrating a Vue.js application with a backend API

Experiment 16: Version control with Git

Experiment 17: Package management with NPM

Experiment 18: Module bundling with Webpack

Experiment 19: Building and deploying a web application

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the basic concepts of web frameworks and their application in web development.
- 2. Design and develop web applications using various web frameworks such as React, Angular, and Vue.js.
- 3. Use various tools and technologies to develop web applications, including Git, NPM, and Webpack.
- 4. Analyze and evaluate the effectiveness of different web frameworks in various scenarios.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
James Holmes, Struts	The Complete Reference, 2nd Edition	Mc.Graw Hill Professional	2006	978-0072263865
Miguel Grinberg	Flask Web Development: Developing Web Applications with Python	O'Reilly Media	2018	9781491991732
David Herron	Node.js Web Development: Server- side development with Node 10 made easy	Packt Publishing	2018	9781788626859

Course Title: Digital Image Processing

Unit II: Image Enhancement & Restoration

Course Contents/syllabus:		T	P/S	S	W/FW	CREDIT UNITS
	3	0	0		0	3
						Teaching
						Hours
Unit I: Introduction of Digital Image Processing						11 H
Introduction to the DIP areas and applications; Components of Digital Image						
Processing; Elements of Visual Perception; Image Sensing and Acquisition;						
Image Sampling and Quantization; Relationships be	tweer	n pixe	els; col	or		
models		_				

15 H

Spatial Domain: Gray level transformations; Histogram processing; Basics	
of Spatial Filtering; Smoothing and Sharpening Spatial Filtering Frequency	
Domain: Introduction to Fourier Transform; Smoothing and Sharpening	
frequency domain filters; Ideal, Butterworth and Gaussian filters.	
Noise models; Mean Filters; Order Statistics; Adaptive filters; Band reject	
Filters; Band pass Filters; Notch Filters; Optimum Notch Filtering; Inverse	
Filtering; Wiener filtering	
Unit III: Feature Extraction and Image Segmentation	14 H
Feature Extraction: Contour and shape dependent feature extraction,	
Extraction of textural features Segmentation: Detection of Discontinuities;	
Edge Linking and Boundary detection; Region based segmentation;	
Morphological processing- erosion and dilation.	
Morphological processing- erosion and dilation. Unit IV: Image Compression and Encoding	14 H
	14 H

- 1. Understand the basic concepts of DIP.
- 2. Improve the quality of digital images.
- 3. Segment digital images and extract various features from digital images
- 4. Understand various image compression techniques and apply such techniques to compress digital images for reducing the sizes of digital images.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rafael C. Gonzales, Richard E. Woods	Digital Image Processing	Pearson	2018	978- 9353062989
Anil Jain K	Fundamentals of Digital Image Processing	Pearson	2015	978- 9332551916
Willliam K Pratt	Digital Image Processing	Wiley	2010	978- 8126526840
Nick Efford	Digital Image Processing a practical introduction using Java	Addison Wesley	2000	978- 0201596236

Course Title: Computational Biology

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3
				Teaching Hours	
Unit I: Introduction					14 H

Nature and scope of life science: Branches of life sciences, Characteristics	
of life, Levels of Organization, Origin of life, Biochemical evolution-	
evolution of Proteins and Nucleotide. Cell Biology: The cell as basic unit of	
life- Prokaryotic cell and Eukaryotic cell, Cell Structure and Function- cell	
membrane, cell organelles, Cell Division; Mitosis & Meiosis. Cell	
Energetics: Laws of Thermodynamics, Photosynthesis, Anaerobic & aerobic	
respiration, Structure and function of mitochondria, respiratory pathways:	
Glycolysis, Kreb's Cycle, Electron transport chain.	
Unit II: More about RNA and DNA	13 H
Chromosome-Genome-Genes-Databases: Bio-molecules- DNA, RNA,	
Protein and amino acids, Chargaff's Rules, GC content. Central Dogma:	
Replication, Transcription, Translation, Post transcriptional & post	
translational modifications, RNA processing, RNA splicing and RNA	
editing. Sense/coding and antisense/template strands, Genetic code.	
Introduction to DNA and Protein sequencing.	
Unit III: Proteins	13 H
Proteins and Databases: Protein structure and function, Protein Primary	
structure, Amino acid residues, Secondary, Tertiary, Quaternary Structure of	
Protein, Protein sequence databases, SwissProt/ TrEMBL, PIR, Sequence	
motif databases -Pfam, PROSITE, Protein structure databases.	
Unit IV: Computation and Biology	14 H
Molecular computational biology: Gene prediction, sequencing genomes,	
similarity search, restriction mapping, Sequence Analysis: Principles and its	
uses, Hidden Markov models for sequence analysis. Introduction of Markov	
Chain and Hidden Markov models. Forward backward algorithm, Viterbi	
and Baum-Welch algorithms	
-	

- 1. Understand the basic of cell structure, divisions involved in reproduction of a cell, and its generic functionality.
- 2. Recognize the base line elements of a RNA and DNA; including fundamental behind their complex structure.
- 3. Comprehend primary structure of the protein and various related data-sets.
- 4. Demonstrate the concept of gene sequence alignment and simulate various related algorithms for the same.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Pevzner, P. A.	Computational Molecular Biology- An Algorithmic Approach	MIT Press	2000	978- 0262161978
Ghosh, Z. and Mallick, B	Bioinformatics Principles and Applications	Oxford University	2008	9780195692303
Mount, D. W	Bioinformatics – sequence and genome analysis	Cold Spring Harbor Laboratory Press	2004	978- 0879697129

Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J.	Computational Cell Biology	Springer	2002	978- 0387953694
---	----------------------------	----------	------	--------------------

Course Title: Simulation and Modeling

Course Contents/syllabus:	L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3

	J	U	U	U	3
				Weightage	Teaching
					Hours
Unit I: Introduction and General Principles				25%	14 H
Introduction to simulation and modeling, Application ar	eas,	Syst	em and		
system environment, Components of a system, Discrete	ano	d con	tinuous		
systems, Basic model forms and its types, Discrete-event s					
in a simulation study, Simulation examples.			•		
Concepts in discrete event simulation, Handling Stepped	and	Even	t-based		
Time in Simulations, Event scheduling/time advance al	gori	thms,	World		
views, List processing using dynamic allocation and linke	ed li	st.			
Unit II: Statistical and Queuing Model				25%	13 H
Terms and concepts, Statistical models, Discrete	and	con	tinuous		
distributions, Poisson distributions, Empirical distrib	butio	ons,	Little's		
equation. Characteristics of queuing systems, Queuing	not	ation	Long-		
Run measures of performance of queuing systems, Stead	dy st	tate b	ehavior		
of infinite and finite calling population models, Use of ne	two	rk of	queues.		
Unit III: Random Number Generation				25%	13 H
Pseudo random numbers, Techniques for generation of	pse	eudo	random		
numbers, Tests for random numbers, Random variate gen	nera	tion,	Inverse		
Transform Technique- Exponential, Uniform, Weil	bull,	Tri	angular		
distributions, Direct transformation for Normal	and	log	normal		
distributions.					
Unit IV: Input Modeling and Output Analysis of Sing	le N	Iodel		25%	14 H
Data collection, Identifying the distribution of data -	his	togra	ms and		
quantile plots, Parameter estimation, Goodness of fit	test	s app	olied to		
simulation inputs, Verification and validation of sim	nulat	ion	models,		
Output analysis and measures of performance and estima	tion				

Course Learning Outcomes: After studying this course students will be able to:

- 1. Discuss the fundamental elements of discrete-event simulation including statistical models, random processes, random variates, and inputs to simulation.
- 2. Analyze a real-world problem and apply modelling methodologies to develop a discrete-event simulation model.
- 3. Interpret discrete-event techniques for solving a simulation problem.
- **4.** Analyze the output of single model.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Jerry Banks, John S. Carson II, Barry L.Nelson and David M.Nicol	Discrete- event system and simulation	Prentice Hall	2009	978- 0136062127
Averill M.Law	Simulation modeling and analysis (SIE)	Tata McGraw Hill	2017	978- 0070667334
David Cloud, Larry Rainey	Applied Modeling and Simulation	Tata McGraw Hill	1998	978- 0072283037
Gabriel A. Wainer	Discrete-event modeling and simulation: a practitioner's approach	CRC Press	2009	978- 1420053364
Bernard P. Zeiger, Herbert Praehofer, Tag Gon Kim	Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems	Academic Press	2002	978- 8178670430
Walter J. Karplus, George A. Bekey, Boris YakobKogan	Modeling and simulation: theory and practice	Springer	2012	978- 1461502357

Course Title: Adhoc and Wireless Sensor Networks

Course Contents/syllabus:	L	T	P/S	SW/FW	CREDIT UNITS
	3	0	0	0	3
					Teaching Hours

	Teaching
	Hours
Unit I: – INTRODUCTION AND ROUTING PROTOCOLS	09 H
Wireless Sensor Networks (WSNs): concepts and architectures -	
Applications of Ad Hoc and Sensor Networks - Design Challenges in Ad	
hoc and Sensor Networks. Wireless Networks, Issues in Ad hoc wireless	
networks, Routing Protocol for Ad Hoc Wireless Networks, Classifications	
of Routing Protocols, Table Driven Routing Protocols – Destination	
Sequenced Distance Vector (DSDV), On–Demand Routing protocols –Ad	
hoc On–Demand Distance Vector Routing (AODV)	
Unit II: WSN NETWORKING CONCEPT AND MAC PROTOCOLS	18 H

Issues in Designing a MAC Protocol for Ad Hoc Wireless Networks - Design Goals of a MAC Protocol for Ad Hoc Wireless Networks, MAC Protocols for wireless sensors Networks, Low duty cycle Protocols and Wakeup concepts, Classification of MAC Protocols, S-MAC, Contention based protocols -PAMAS schedule-based protocols -LEACH, IEEE 802.15.4.	
MAC protocols, Energy efficient routing challenges and issues in transport layer	
ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC	
WIRELESS NETWORKS:	
Routing Protocol: Issues in designing a routing protocol for Ad hoc networks	
- Classification- proactive routing - reactive routing (on-demand) - hybrid	
routing - Transport Layer protocol for Ad hoc networks - Design Goals of a	
Transport Layer Protocol for Ad Hoc Wireless Networks -Classification of	
Transport Layer solutions-TCP over Ad hoc wireless	
Unit III: SENSOR NETWORKS INTRODUCTION AND	13 H
em m. benson nervous introduction and	
ARCHITECTURES	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture —	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture – Hardware Components, Energy Consumption of Sensor Nodes, Network	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations.	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY	14 H
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY Security in Ad Hoc Wireless Networks - Network Security Requirements.	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY Security in Ad Hoc Wireless Networks - Network Security Requirements. Network Security requirements issues and Challenges in security	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY Security in Ad Hoc Wireless Networks - Network Security Requirements. Network Security requirements issues and Challenges in security provisioning Network, Security Attacks. Layer wise attack in wireless sensor	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY Security in Ad Hoc Wireless Networks - Network Security Requirements. Network Security requirements issues and Challenges in security provisioning Network, Security Attacks. Layer wise attack in wireless sensor networks, possible solutions for Jamming, tampering black hole attack,	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY Security in Ad Hoc Wireless Networks - Network Security Requirements. Network Security requirements issues and Challenges in security provisioning Network, Security Attacks. Layer wise attack in wireless sensor networks, possible solutions for Jamming, tampering black hole attack, Flooding attack, Key distribution and Management, Secure Routing -SPINS	
ARCHITECTURES Overview of Online Banking Security, Mobile Banking Security, Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture — Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture — Sensor Network Scenarios, Transceiver Design Considerations. Unit IV: SENSOR NETWORK SECURITY Security in Ad Hoc Wireless Networks - Network Security Requirements. Network Security requirements issues and Challenges in security provisioning Network, Security Attacks. Layer wise attack in wireless sensor networks, possible solutions for Jamming, tampering black hole attack,	

- 1. Explain the Fundamental Concepts and applications of ad hoc and wireless sensor networks and apply this knowledge to identify the suitable routing algorithm based on the network Justify the need of various measures to protect cyber space
- 2. Apply the knowledge to identify appropriate physical and MAC layer protocols Take countermeasures against hacking
- 3. Be familiar with the OS used in Wireless Sensor Networks and build basic modules.
- 4. Understand the Challenges in security provisioning, Security Attacks and security issues possible in Adhoc and Sensors Networks

AUTHOR	TITLE	Publisher	Year of publication	ISBN
C. Siva Ram Murthy, and B. S. Manoj	Ad Hoc Wireless Networks: Architectures and Protocols	Pearson	2006	978- 8131706886
Labiod. H	Wireless Adhoc and Sensor Networks	Wiley	2007	978- 1848210035

Li, X	Wireless ad -hoc and sensor Networks: theory and applications	Cambridge University Press	2008	978- 1107006805
Carlos De Morais Cordeiro, Dharma Prakash Agrawal	Ad Hoc & Sensor Networks: Theory and Applications	World Scientific Publishing	2011	978- 9814338899

Course Title: Quantum Computing

Course Contents/syllabus:	L	Т	P/S	S	W/FW	TOTAL CREDIT UNITS
	3	0	0		0	3
						Teaching Hours
Unit I: – Introduction						09 H
Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computation, Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms						
Unit II: Quantum Computations						18 H
Quantum Computation: Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database. Quantum Computers: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance						
Unit III: Quantum Information						13 H
Quantum Information: Quantum noise and Quantum Op Noise and Markov Processes, Quantum Operations, Ex noise and Quantum Operations – Applications of Q Limitations of the Quantum operations formalism, Dis Quantum information.	ampl uanti	les of um o	Quantu peration	ım ns,		
Unit IV: Quantum Error Correction						14 H
Quantum Error Correction: Introduction, Shor code, Terror –Correction, Constructing Quantum Codes, Stabil Tolerant Quantum Computation, Entropy and infor Entropy, Basic properties of Entropy, Von Neumann, Stabata Compression, Entanglement as a physical resource	ilizer matio	code on –	s, Fault Shann	on		

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the quantum model of computation and the basic principles of quantum mechanics.
- 2. Be familiar with basic quantum algorithms and their analysis.
- 3. Be familiar with basic quantum protocols such as teleportation and super dense coding.

4. See how the quantum model relates to classical models of deterministic and probabilistic computation.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Micheal A. Nielsen. &Issac L. Chiang	Quantum Computation and Quantum Information	Cambridge University Press	2013	978- 1107619197
Eleanor G. Rieffel, Wolfgang H. Polak	Quantum Computing - A Gentle Introduction	MIT Press	2014	978- 0262526678
Scott Aaronson	Quantum Computing since Democritus	Cambridge University Press	2013	978- 0521199568
Yanofsky's and Mannucci	Quantum Computing for Computer Scientists	Cambridge University Press	2008	978- 0521879965

Course Title: Computer Vision

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	0	3
					Teaching Hours
Unit I: – Introduction					13 H
Overview, computer imaging systems, lenses, Image formation and sensing, Image analysis, pre-processing and Binary image analysis.					
Unit II: Edge Detection and Segmentation					14 H
Edge detection, Edge detection performance, Hough transform, corner detection. Segmentation, Morphological filtering, Fourier transform.					
Unit III: Feature Extraction					13 H
Feature extraction, shape, histogram, color, spectral, texture, using CVIP tools, Feature analysis, feature vectors, distance /similarity measures, data pre- processing.					
Unit IV: Pattern Analysis					14 H
Pattern Analysis: Clustering: K-Means, K-Medoids, M Classification: Discriminant Function, Supervised, Ur supervised. Classifiers: Bayes, KNN, ANN mode Reduction: PCA, LDA, ICA, and Non- parametric met in Activity Recognition, computational photography, Bi	n-sup ls; l hods	ervise Dime . Rece	ed, Sen nsionali	ni- ity	

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand image detection and analysis.
- 2. Analyze the pros and cons of various edge detection and segmentation techniques.
- 3. Identify features to recognize object, scene and categorization from images.
- 4. Develop the skills necessary to build computer vision applications.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Richard Szeliski	Computer Vision: Algorithms and Applications	Springer	2010	978- 1848829343
Goodfellow, Bengio, and Courville	Deep Learning	MIT Press	2016	978- 0262035613
Fisher, Breckon et al.	Dictionary of Computer Vision and Image Processing	Wiley	2005	978- 0470015261