:	Semester-Wise Prog	ramme structure for	M.Sc.(H) Microbiolo	gy (2 Years)	
Sr. No.	Ye	ar 1	Year 2		
SI. NO.	Semester 1	Semester 2	Semester 3	Semester 4	
1	Microbial Metabolism [CU:4,L-4] {CC}	Immunology & Immunotechniques [CU:4,L-4] {CC}	Advanced Bioinformatics [CU:4,L-4] {CC}	Bioprocess Engineering and Technology [CU:4,L- 4] {CC}	
2	Bioanalytical Techniques [CU:4,L- 4] {CC}	Molecular Biology & Gene Expression [CU:4,L-4] {CC}	Genetic Engineering and Recombinant DNA Technology [CU:4,L-4] {CC}	Medical Microbiology [CU:4,L-4] {AC}	
3	Metabolism of Biomolecules [CU:4,L-4] {CC}	Practicals in Microbiology -II [CU:4,P-4] {CC}	Practicals in Biochemistry -III [CU:2,P-2] {CC}	SE6- [CU:4, L-4] {SE}	
4	Practicals in Microbiology -I [CU:4,P-4] {CC}	SE3 [CU:4 ,L-4] {SE} {SE}	Fundamentals of BioEntrepreneurship [CU:2, L-2] {CC}	Professional Ethics - II [CU:1, L-1] {VAC}	
5	SE1- [CU:4 ,L-4] {SE}	SE4- [CU:4 ,L-4]	Research Paper Presentation [CU:2,P-2] {NTCC}	Dissertation Work [CU:12,P-12] {NTCC}	
6	SE2- [CU:4 ,L-4] {SE}	SE5- [CU:4 ,L-4] {SE}	Biostatistics [CU:2,L-2] {CC}		
7	Behavioral Sciences [CU:1,L-1] {VAC}	Behavioral Sciences [CU:1,L-1] {VAC}	Dissertation Work [CU:8,P-8] {NTCC}	-	
8	Foreign Business Language (French/German) [CU:1,L-1] {VAC}	Foreign Business Language (French/German) [CU:1,L-1] {VAC}	Professional Ethics - I [CU:1, L-1] {VAC}	-	
Credits	26	26	25	25	
	Total	Programme Credits		102	

AC	Allied Course
AEC	Ability Enhancement Course
CC	Core Course
GE	General Elective

OE	Open Elective
SC	Skill component
SE	Specialization Elective Course
SEC	Skill Enhancement Course
VAC	Value Added Course
NTCC	Non Teaching Credit Course
CU	Credit Unit
L;T;P	Lecture ; Tutorial ; Practical
Н	Honours

Programme structure for M.Sc. (H) Microbiology- 2 years (1st Semester)

Sr. No	Course Code	Course Title	Course Type	Credits				Credit Units	
				L	Т	Ρ	FW	SW	
1	MBO603	Microbial Metabolism	Core Courses	4	0	0	0	0	4
2	BCH602	Bioanalytical Techniques	Core Courses	4	0	0	0	0	4
3		Metabolism of Biomolecules	Core Courses	4	0	0	0	0	4
4	MBO602	Practicals in Microbiology-I	Core Course	0	0	4	0	0	4
	MBO601	<u>Students will choose</u> <u>anytwo*</u> 1.General Microbiology and Microbial Genetics	Specializatio nElective Course	4	0	0	0	0	4
	BTY602	2. IPR, Biosafety and Ethics		4	0	0	0	0	4
		3. MOOC							
6	PSY601	Behavioural Science	Value Added Courses	1	0	0	0	0	1
1	FOL101/FOL 102	Foreign Business Language (French/German)	Value Added Courses	1	0	0	0	0	1
Total Credits. 26									

*The Specialization Elective Courses of 1st, 2nd and 4th Semesters will be pooled together.

* The Specialization Elective Courses can also be taken through MOOC. A maximum of 4 credits per semester can be taken through MOOC.

MBO603: Microbial Metabolism

L	Т	Р	Total Credits
4	0	0	4

<u>Objectives</u>: After studying this course, the students will be able to understand the metabolic diversity in microbes.

Course content and syllabus

	Teaching Hours
Unit I: Energy derived from chemicals and light	18 hrs
Basic principles of energy generation, substrate-level phosphorylation (Glycolysis and Fermentation), Respiration-linked phosphorylation (ETC, components of ETC), Generation of proton motive force, Diversity of Bacterial Electron Transport Chains (Oxygen reduction, Nitrate reduction, alternate electron acceptors and donors, iron oxidation)	
Photosynthetic microorganisms (origin and evolution), photosynthetic apparatus, photosynthetic bacterial groups (purple non-sulfur bacteria, purple sulfur bacteria, green sulfur bacteria, heliobacteria, cyanobacteria). Photosynthesis with rhodopsin.	
Unit II: Biosynthesis of macromolecules	18 hrs
Macromolecular synthesis from precursor substrate. Macromolecular synthesis from 1-carbon substrate (Carbon di oxide fixation by calvin cycle, reductive citric acid pathway, hydroxypropionate pathway, reductive acetyl-coA pathway), 1-C fixation by Glycine-Serine and Ribulose monophosphate pathway.	
Pathways that generate Biosynthetic Precursors from Sugars, Role of Pyruvate in the synthesis of Precursor metabolites, TCA cycle, Glyoxylate shunt, biosynthesis of Glucose.	
Biosynthesis of Amino acids, Purines, Pyrimidines and Lipids. Nitrogen and sulfur assimilation.	
Unit III: Assembly of Bacterial Cell Structure	18 hrs
Membrane and Peptidoglycan synthesis. Protein assembly, structure and function. Export of proteins (signal sequence, Sec-dependent protein secretion, twin-arginine protein secretion) Protein targeting to outer membrane, extracellular secretion by gram-negative bacteria. Protein secretion in lower eukaryotes	
Unit IV: Microbes in Biodegradation	18 hrs
Carbon cycle.	

Catabolism of Polymeric Materials: polysaccharides, starch, glycogen, chitin, cellulose, hemicellulose, xylans, pectins, proteins, and nucleic acids	
Catabolism of Low-molecular weight compounds: uric acids, organic acids.	
Catabolism of Lipids: Phospholipids, β -oxidation of Fatty Acids	
Catabolism of Aromatic and aliphatic compounds: Lignin, Alkanes and aliphatic hydrocarbons, aromatic hydrocarbons, xenobiotic compounds.	

Course Learning Outcomes:

- 1. Methods by which microorganisms derive energy
- 2. Study methods by which microorganisms synthesize various macromolecules
- 3. Biosynthesis and assembly of bacterial cell structure
- 4. Study microbial pathways involved in biodegradation

Author	Title	Publisher	Ed/year	ISBN No	Pages
Staley, J.T., Gunsalus, R. P., Lory, S., and Perry, J. J.	Microbial Life	Sinauer Associates	2 nd Ed.	978-0-87893-4	1066
Pelczar Jr MJ, Chan ECS, and Krieg NR.	Microbiology	Tata McGraw Hill	5 th Ed.	9780070492585	957
Moat AG and Foster JW	Microbial Physiology	John Wiley & Sons	4 th Ed.	978- 0471394839	736

BCH602: Bioanalytical Techniques

L	т	Р	Total Credits
4	0	0	4

Course Objectives: Comprehensively understand the theoretical foundations underpinning bioanalytical techniques. Apply acquired knowledge to critically analyze and optimize methodologies for precise biomolecule quantification and analysis.

Course content and syllabus

	Teaching Hours
Unit I -Spectroscopy & Chromatography	18 hrs
Spectroscopy- Concepts of spectroscopy, Laws of photometry. Beer-Lambert's law, Principles and applications of colorimetry. UV-Visible absorption spectroscopy, Fluorescence spectrophotometry, Mass spectroscopy, CD, X-ray diffraction, X-ray spectroscopy and NMR.	
Chromatography – Principles and applications of paper, thin layer, ion exchange, affinity, gel permeation, adsorption and partition chromatography. HPLC and FPLC.	
Unit II: Centrifugation & Electrophoresis	18 hrs
Principle of centrifugation, concepts of RCF, different types of instruments and rotors, preparative, differential and density gradient centrifugation, analytical ultra-centrifugation, determination of molecular weights and other applications, sub-cellular fractionation.	
Electrophoretic techniques – Principles of electrophoretic separation. Types of electrophoresis including paper, cellulose, acetate/nitrate and gel. Electroporation, Pulse field gel electrophoresis, 2D Gel Electrophoresis.	
Unit III: Microscopy	18 hrs
Microscopy – Bright field, Dark field, Phase contrast and Fluorescence microscopy, Transmission and scanning, freeze fracture techniques, specific staining of biological materials.	
Unit IV: Nano-biosensors	18 hrs
Introduction to Nano-biosensors and their biological applications.	

Course Learning Outcomes:

- 1. Understand principles of various techniques to quantify and separate biomolecules.
- 2. Describe the methodology of various bioanalytical techniques employed in laboratories.
- 3. Discriminate between various techniques with respect to their applications.
- 4. Evaluate the impact of Nano-biosensors in the advancement of bioanalytical techniques.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Karp, Gerald	Cell and Molecular Biology: Concepts and Experiments	John Wiley andSons, Inc	6 th edition/2010	111830179X 978- 1118301791	783
Wilson K., Walker J.	Principle and Techniques of Biochemistry and Molecular Biology	Cambridge University Press	6th edition/2006	0521178746 978- 0521178747	744
Plummer, David	An Introduction toPractical Biochemistry	Tata Mc GrawHills	3rd edition/2017	0070994870 978- 0070994874	332

BCH609: Metabolism of Biomolecules

L	т	Р	Total Credits
4	0	0	0

<u>Objectives</u>: After studying this course, the students will be able to refresh their knowledge of biomolecules and their metabolism.

Course content and syllabus

	Teaching Hours
Unit I: Carbohydrate metabolism	18 hrs
Structure, function, properties, reactions, and classification of carbohydrates; Glycosidic linkage – types, occurrence, and functions of glycoconjugates, Carbohydrate metabolism – degradation and synthesis of carbohydrates, glycolysis, gluconeogenesis, glycogenesis, TCA cycle, Electron transport chain, regulation of carbohydrate metabolism and central carbon metabolism.	
Unit II: Protein metabolism	18 hrs
Amino-acids, peptides, and proteins – Classification, biological role, Zwitterion structure, isoelectric point and correlation to acidity and basicity of amino acids. Overview of primary, secondary, tertiary, and quaternary structure of proteins, denaturation of proteins. Amino acid metabolism – biosynthesis and catabolism, amino acids as carbon pool, Autophagy, Protein maturation and secretion	
Unit III: Nucleic acid metabolism	18 hrs
Nucleic acids - Structure and function of nucleotides. Primary, secondary and tertiary structure of nucleic acids, DNA forms and conformations. Nucleotides – Biosynthesis and degradation of purine and pyrimidine nucleotides and its regulation.	
Unit IV: Fat metabolism	18 hrs
Classification, structure, properties and functions of fatty acids, essential fatty acids, fats, phospholipids, sphingolipids, cerebrosides, steroids, bile acids, prostaglandins and lipoproteins. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). Biosynthesis and degradation of tri-acylglycerols, phospholipids and sphingolipids, α -, β - and ω -oxidation of fatty acids,	

Course Learning Outcomes:

1. Understand carbohydrate metabolism.

- 2. Understand protein metabolism
- 3. Understand nucleic acid metabolism
- 4. Understand fat metabolism.

Pedagogy for Course Delivery

Lectures: 60 sessions Presentation / Seminar: 4 sessions Class Test: 2 sessions Surprise Test: 6 sessions Total: 72 sessions

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
Finar, I. L.	Organic Chemistry (Volume 1 &	Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).	2002	978-8177585421	966 pages
Voet, D. andVoet, J.	Biochemistry	Wiley	4 th edition,2013	9781118092446	1616 pages
D.L. Nelson and M.M. Cox	Lehninger Principles of Biochemistry	McMillan North Publication	4 th Edition 20	978- 1319108243	1328 pages
L. Stryer	Biochemistry	Freeman &Co.New York.	5th Edition	978- 0716746843	1050 pages

MBO602: Practicals in Microbiology – I

L	Т	Р	Total Credits
0	0	4	4

<u>Objective</u>- This course will teach students about practical aspects of Microbiology, biochemistry and bioanalytical techniques.

Course content and syllabus

	Teaching Hours
Unit I: Basic Culture Techniques	36 hrs
1. Preparation of solid/liquid culture media.	
2. Isolation and purification of micro-organisms from soil/water/air.	
3. Estimation of CFU count by spread/pour plate method.	
4. Gram staining of bacterial culture	
5. Preservation of microbial pure culture	
Unit II: Techniques in Biochemistry	36 hrs
1. Preparation of buffers and solutions	
2. Estimation of carbohydrates	
3. Estimation of proteins by Bradford method	
4. Estimation of proteins using uv-spectroscopy from its molar extinction	
coefficient.	
5. Saponification value of fats/oils	
Unit III: Microbial Growth	36 hrs
1. Bacterial Growth curve	
Effect of pH/temperature on bacterial growth.	
3. Effect of different carbon source on bacterial growth.	
4. Effect of different nitrogen source on bacterial growth.	
Unit IV: Bioanalytical Techniques	36 hrs
1. Verification of Lambert-Beers law.	
2. Preparation of standard curve.	
3. Separation of amino acids by paper/thin-layer chromatography.	
4. Plant pigment separation by paper/thin-layer chromatography.	

Course Learning Outcomes: this course will teach students to-

- 1. Preparation of culture media and isolation of microbes
- 2. Quantitative estimation of various biomolecules
- 3. Microbial growth and effect of different parameters on microbial growth
- 4. Use of spectroscopy and chromatography in biology

Author	Title	Publisher	Ed/year	ISBN No	Pages
	to	Tata McGraw- Hill	3rd	0-07-099487-0	332
Ponmurugan, P. and Prabhu, B. G.	Biotechniques	MJP Publishers	-	978- 8180941191	696

MBO601: General Microbiology and Microbial Genetics

L	т	Р	Total Credits
4	0	0	4

Course Objectives: The course aims to provide advanced knowledge of methods used in microbiology. Knowledge of bacterial classification system, diversity, and parameters affecting microbial growth will be provided. An insight to bacterial genetics, viruses and their interaction with host cells will also be provided.

Course content and syllabus

	Teaching Hours
Unit I: Types of Microscopy and Principles of Microbiology	18 hrs
Microscopy: Bright field, phase contrast, fluorescence, confocal, and electron microscopy.	
Principles of Microbiology : Principles and applications of bright field, dark field, phasecontrast, fluorescence and scanning tunnelling microscopy.	
Methods in microbiology: Pure culture techniques, theory & practice of sterilization, principles of microbial nutrition, microbial culture media, enrichment culture techniques, culture collection, isolation and & preservation.	
Unit II: Bacterial Classification and Diversity	18 hrs
Bacterial Classification and Diversity: Importance of taxonomy conventional and modern methods; polyphasic approach of bacterial classification, 16S rRNA	
Genomic Similarity: Content of guanine (G)+ cytosine (C) (%GC), DNA-DNA homology, Fatty acid analysis; archaea as the earliest life forms, archaea vs eubacteria, bacteria producing important secondary metabolites.	
Prokaryotic Cells: Structure-function; cell walls of eubacteria and related molecules, outer membrane of Gram-negative and Gram-positive bacteria, capsules, slime layers, Pili, fimbriae and flagella, sporulation and regeneration of bacteria.	
Microbial Growth: Definition of growth, mathematical expression of growth, growth curve, diauxic & synchronous growth, continuous culture, effect of environmental factors like temperature, pH, water availability, dissolved oxygen, agitation and aeration etc., on the growth of microbes.	
Unit III: Bacterial Genetics and Virology	18 hrs

 Bacterial Genetics and Virology: Transformation, transduction, conjugation, RecA, plasmids, their replication, copy number and compatibility, drug resistance; transposons, Viruses: General characteristics, classification, ultra-structure, purification & assay, viroids; virulent and temperate bacteriophages, γ- lytic cascades and lysogenic repression. 	
Unit IV: Host-pathogen interaction	18 hrs
Host-pathogen interaction: Recognition and entry processes of different pathogens like bacteria, viruses and protozoans into animal and plant host cells, alteration of hostcell behaviour by pathogens, virus-induced cell transformation, pathogen-induced diseases in animals and plants, cell-cell fusion in both normal	

Course Learning Outcomes:

- 1. Understand advanced Microbiology.
- 2. Evaluate bacterial classification and diversity
- 3. Compare effect of different environment factor on bacterial growth
- 4. Perceive knowledge of host-pathogen interaction

Author	Title	Publisher	Ed/year	ISBN No	Pages
Pelczar, M.J. Jr., ChanECS and Krieg, N.R.	Microbiology: Concepts and Applications	New York; Madrid : McGraw- Hill,	1993	0070492581, 978007049 2585	957
Cappucino, J.G.	Microbiology-A laboratory manual,4th ed., Harlow, Addition- Wesley.	Hoboken, N.J.:Pearson	2020	0135188997, 978013520 3996, 0135203996	541

BTY602: IPR, Biosafety and Bioethics

L	Т	Р	Total Credits
4	0	0	4

Objective: Examine Intellectual Property Rights (IPR), Biosafety, and Bioethics to understand their implications in biotechnology and life sciences, fostering insights into ethical, legal, and safety considerations

Course content and syllabus

	Teaching
	Hours
Unit I: Introduction to IPR and Patent Database	18 hrs
Types of IP: Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications.	
Protection of New GMOs: International framework for the protection of IP. IPs of relevance to Biotechnology and few Case Studies.	
Patent databases : Invention in context of "prior art"; Searching national/International Databases; Analysis and report formation	
Unit II: Types of patent and patent application	18 hrs
Types of patents: Indian Patent Act 1970; Recent Amendments; Filing of a patent application; Precautions before patenting-disclosure/non-disclosure; WIPO Treaties; Budapest Treaty; PCT and Implications; Role of a Country Patent Office; Procedure for filing a PCT application	
Unit III: Biosafety, GMOs and Biodiversity Act	18 hrs
Biosafety : Introduction; Historical Background: Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals; Biosafety guidelines - Government of India;	
Definition of GMOs & LMOs: Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; RiskAnalysis;	
Risk Assessment: Risk management and communication; Overview of National	
Regulations and relevant International Agreements including Cartagena Protocol.	

Biodiversity Legislation in India; Indian Biodiversity Act and provisions on crop	
Unit IV: Bioethics, Ethics and the law issues	18 hrs
Bioethics: Concepts; Philosophical considerations; Epistemology of Science; EthicalTerms; Principles & Theories; Relevance to Biotechnology;	
Ethics and the Law Issues: types and policies; Research concerns; Emerging issues: Biotechnology's Impact on Society; DNA on the Witness Stand - Use of genetic evidence in civil and criminal court cases; Challenges to Public Policy – To Regulate or Not to Regulate; Improving public understanding of biotechnology products to correct misconceptions.	

Course Learning Outcomes:

- 1. Understand IPR and its database.
- 2. Evaluate different types of patents and policies
- 3. Compare the biosafety methods and differences between GMOs and LMOs.
- 4. Perceive knowledge of Bioethics and laws.

Author	Title	Publisher	Ed/year	ISBN No	Pages
D N Choudhary	Evolution of patent laws: "developing countries' perspective	Delhi CapitalLaw House	2006	OCLC Number: 255182178	476

PSY601: Behavioural Science: Understanding Self for Effectiveness

L	Т	Р	Total Credits
1	0	0	1

Course Contents/syllabus:

	Teaching
	time
Unit I: Self: Core Competency	5 hrs
Understanding of Self, Components of Self – Self identity , Self concept, Self	
confidence, Self image, BIG5 Factors	
Unit II: Techniques of Self Awareness	4 hrs
Exploration through Johari Window, Mapping the key characteristics of self, Framing a charter for self Stages – self awareness, self acceptance	
and self-realization	
Unit III: Self Esteem & Effectiveness	5 hrs
Meaning, Importance, Components of self esteem, High and low self esteem,	
Measuring your self esteem	
Unit IV: Building Positive Attitude and Emotional Competence	4 hrs
Meaning and nature of attitude, Components and Types of attitude ,Importance and relevance of attitude Emotional Intelligence – Meaning, components,	
Importance and Relevance Positive and negative emotions, Healthy and Unhealthyexpression of emotions	

Course Learning Outcomes: At the end of this course, the students will be able to:

- 1. The student will apply self-introspection as a tool for self-awareness.
- 2. The student will understand self-concept for self-recognition, self-improvement and perception of others.
- 3. The student will be able to analyze their physical self, social self, the competent self and psychological self.
- 4. The student will be able to analyze what motivates his/her actions and the actions of others

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Singh A.	Achieving Behavioural Excellence for Success	Wiley Publication	2012	97881265 8027
Towers, Marc	Self Esteem	American Media	1995	97818849 26297
Pedler Mike, Burgoyne John, Boydell Tom	A Manager's Guide to Self- Development	McGraw-Hill	2006	978- 00771147 01
Covey, R. Stephen	Seven habits of Highly Effective People	Simon & Schuster Ltd	2013	978- 14516396 12
Khera Shiv	You Can Win	Macmillan	2005	978- 03339374 02
Gegax Tom	Winning in the Game of Life	Harmony Books	1999	978- 06096039 25
Singh, Dalip	Emotional Intelligence at Work	Publications	2006	97807619 35322
Goleman, Daniel	Emotional Intelligence	Bantam Books	2007	97805530 95036
Goleman, Daniel	ing with E.I	Bantam Books	1998	97805531 04622

FOL102: Introduction to German Culture and Language

L	Т	Р	Total Credits
1	0	0	1

Course Contents/syllabus:

	Teaching hours
Unit-I Introduction to German Language (Einführung)	5 hrs
Introduction to German as a global language, Self-introduction and Greetings, Die Alphabeten, Phonetics: the sound of consonants and vowels, Wie buchstabieren Sie Ihren Name?	
Unit-II- Numbers and everyday conversation (die Zahl und Gespräche)	4 hrs
Counting in German from 1-100, Simple Calculation and verb 'kosten' - Wie vielkostet das? Plural Forms, Vocabulary: Wochentage, Monate, Jahreszeiten, Ordinal numbers and the question - Wann haben Sie Geburtstag?	
Unit-III- Regular verbs and nominative case: articles and pronouns	5 hrs
(Regelmässige Verben und Nominativ Kasus: Artikel und Pronomen)	
Introduction to all personal pronouns and conjugation of Regular verbs Detailed exercise on regular verbs. Reading a text on regular verbs. Introduction to definite. Vocabulary: Schulsachen und Getränke, Nominative case/ Articles (der, die, das) Nominative Pronouns: - Applicability of pronouns for both persons and things. Usage of nominative Personal Pronouns Introduction of nominative possessive pronouns usage of nominative possessive pronouns	
Unit-IV- The Family, Work-life and Professions (Familienmitglieder und Berufe) & Interrogative sentences (W-Fragen)	4 hrs
The Family, Work-life and Professions (Familienmitglieder und Berufe) Vocabulary: Professions and conjugation of the verb 'sein' Introduction to simplepossessive pronouns with the help of the verb 'haben' Usage of possessive pronouns. Interrogative sentences (W-Fragen) W-Fragen: who, what, where, when, which, how, how many, how much, etc. Exercises on the question pronouns	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic German. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical¹⁸ structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Year	ISBN
Rolf Bruseke	Starten Wir A 1	Langers InternationalPvt Ltd (Max Hueber Verlag)	2017	978-3190160 006
Giorgio Motta	Wir Plus Grundkurs Deutschfur Junge Lerner Book	Ernst Klelt Verlog	2011	978-8183072120
Heimy Taylor, Werner Haas	Station en Deutsch Self StudyCourse German Guide	Wiley	2007	978- 0470165 515

FOL101: Introduction to French Culture and Language

L	т	Р	Total Credits
1	0	0	1

Course Contents/syllabus:

_

	Teaching
	hours
Unit-I Introduction to French language	4 hrs
Brief introduction of French and Francophone countries	
Presenting oneself	
Getting information about someone else	
Greeting and taking leave	
 Asking/giving personal information 	
Unit-II- A rendez-vous ; Visiting a place	5 hrs
Pronouncing and writing numbers in French	
Spell and count numbers	
Telling the time	
Temporal expressions	
Communicating in class	
• Fixing an hour, place for a meeting.	
Describing a person.	
 Identifying a person, object and place 	
Describing relation in a family	
 A specific person, object and place 	
Unit-III- An interview	5 hrs
Description of objects, people and places	
Nationalities	
 Speaking about one's professions 	
 Expressing Actions using regular –er ending verbs; avoir, être; reflexive verbs –usage, conjuagation 	
Interview of celebrity	

4 hrs

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic French. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to :

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Year	ISBN No
Christine Andant, Chaterine Metton, Annabelle Nachon, Fabienne Nugue	A Propos - A1 Livre De L'Eleve, Cahier D' Exercices	Langers International Private Limited	2010	978-9380809069
Manjiri Khandekar and Roopa Luktuke	Jumelage - 1 Methode De Fraincais - French	Langers International Private Limited	2020	978-9380809854
<u>Michael Magne,</u> Marie-Laure Lions-Olivieri	Version Originale1: Cahier d'exercices	Maison Des Langues	2010	9788484435617

Programme structure for M.Sc. (H) Microbiology- 2 years (2nd Semester)

Sr. No	Course Code	Course Title	Course Type		Credits				Credit Units
				L	Т	Ρ	FW	SW	
1	IMM601	Immunology and Immunotechniques	Core Course	4	0	0	0	0	4
2	HGM603	Molecular Biology and Gene Expression	Core Course	4	0	0	0	0	4
3	MBO605	Practicals in Microbiology - II	Core Course	0	0	4	0	0	4
4		Students will choose any three from the given choices*	Specialization Elective Course						
	MBO604	1. Food and Industrial Microbiology		4	0	0	0	0	4
		2. Environmental Microbiology							
		3. Diagnostic Techniques		4	0	0	0	0	4
	DOLIGIO	4. Essentials in Biotechnology		4	0	0	0	0	4
	BCH610	5. Topics in Life Sciences							
	BCH605	6. Advanced Enzymology							
		7. MOOC							
5	PSY610	Behavioural Science	Value Added Course	1	0	0	0	0	1
6	FOL103/ FOL104	Foreign Business Language	Value Added Course	1	0	0	0	0	1

Total Credits

26

*The Specialization Elective Course of 1st, 2nd and 4th semesters will be pooled together.

*The Specialization Elective Course can also be taken through MOOC. A maximum of 4 credits per semester can be taken through MOOC.

IMM601: Immunology and Immunotechniques

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: The objective of this course is to provide basics of immune system where studentswill learn the components and molecules of immunity and various immune responses at the cellular level that work together to protect the host, autoimmune disorders and Immunotechniques.

Course content and syllabus

	Teaching
	Hours
Unit I: Introduction and Overview of Immune System	18 hrs
Historical development of the branch "Immunology", Overview of the immune system, Molecules, cells and organs involved in immunity. Hematopoiesis, Innate immunity,	
adaptive immunity, Antigens, Immunogens, Haptens, Epitopes. Antigen- Antibodyinteractions, Discovery of immunoglobulins.	
Unit II: Adaptive Immune response	18 hrs
Humoral Immunity, Structure and function of various classes of immunoglobulins, Generation of antibody diversity, class switching among constant-region genes, B-cellactivation and differentiation, B-cell receptor and the immunoglobulin superfamily, Generation of B cells, Responses, Immunological memory, Cell mediated immunity, MHC restriction and mechanism of antigen presentation, T-cell receptors, maturation, activation and differentiation, Generation of different types of T cells, Responses,	
Immunological memory.	
Unit III: Immune Effector Mechanisms and Immune system in Health/Disease	18 hrs
Properties of cytokines, receptors, The complement systems, mechanism of complement activation, pathology related to complement proteins, Allergy, hypersensitivity (I,II,III,IV), Tolerance, Mechanisms of induction of autoimmunity, treatment of autoimmune diseases. Immunodeficiencies, AIDS, Transplantation immunology, Tumor antigens and cancer immunotherapy, Concepts of vaccines, whole-organism vaccines, recombinant vaccines, DNA vaccine, synthetic peptide and multivalent sub-unit vaccines.	
Unit IV: Immunotechniques	18 hrs

Applications of antibodies in diagnostics and routine laboratory assay systems. Agglutination reaction, principles of western blots, radioimmunoassay, ELISA, immunohistochemistry, Development of monoclonal antibodies, Flow cytometry, immunocytes identification and purification.

Course Learning Outcomes:

- 1. Understanding of mechanisms used by the human body to fight foreign agents and disease-causing pathogens.
- 2. Students will be able to devise strategies to combat infection or diseases produced by alteredself.
- 3. Students will develop ability to use this knowledge in the processes of immunization, antibody engineering, vaccine development, transplantation, and cancer therapy.
- 4. Students will develop ability to use various techniques of immunology in research work.

Author	Title	Publisher	Ed/year	ISBN No	Pages
J. Owen, J. Punt, S. Stranford	Kuby Immunology (8 th Edition)	WH Freeman and Company, USA	2012	978- 1319114701	944
D. Male, J. Brostoff, D. Roth, I. Roitt	Immunology (8 th Edition)	Saunders, Elsevier, USA	2012	978- 0702045486	482
K. Murphy	Janeway's Immunobiology (8 th Edition)	Garland Science, USA	2011	978- 0815342908	887
A. Abbas, A. Lichtman, S. Pillai	Cellular and Molecular Immunology (8 th Edition)	Saunders, Elsevier, USA	2014	978- 8131264577	-

HGM603: Molecular Biology and Gene Expression

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: The objective of this course is to teach students the molecular details of the process of DNA replication, transcription and translation in prokaryotes and eukaryotes and regulation of gene expression.

Course content and syllabus:

	Teaching
	Hours
Unit I: DNA Replication	18 hrs
DNA replication in Prokaryotes: Initiation, Elongation and Termination. Regulation of replication.	
DNA replication in Eukaryotes: Initiation, Elongation and Termination. End- Replicationproblem.	
Unit II: RNA Transcription	18 hrs
RNA synthesis and processing in prokaryotes and eukaryotes: transcription factors andmachinery, formation of initiation complex, transcription activator and repressor, RNApolymerases, capping, elongation, and termination, RNA processing, RNA editing, spilicing, and polyadenylarion, structure and function of different types of RNA, non-coding RNA, RNA transport.	
Unit III: Translation of Proteins	18 hrs
Protein synthesis and processing in prokaryotes and eukaryotes: Ribosome structure, genetic code, aminoacylation of tRNA, tRNA-identity aminoacyl tRNA synthetases, formation of initiation complex, initiation factors and their regulation, elongation andelongation factors, termination, translation proof- reading, translational inhibitors. Post-translational modifications of proteins.	
Unit IV: Regulation of Gene Expression	18 hrs
Regulation of Gene Expression in Bacteria: Concept of operon, lac operon, cataboliterepression, trp operon	
Phages: control of lytic and lysogenic cycles	
Regulation of Gene Expression in Eukaryotes: Regulatory promoters, enhancers and silencers. Transcription activator protein. Role of mediator protein in transcription. Gal4 operon. Chromatin remodeling and Epigenetic modifications.	

Course Learning Outcomes:

- 1. Molecular mechanisms of DNA replication in prokaryotes and Eukaryotes
- 2. DNA transcription in prokaryotes and eukaryotes
- 3. Protein synthesis in prokaryotes and eukaryotes
- 4. regulation of gene expression

Author	Title	Publisher	Ed/year	ISBN No	Pages
Watson, JD., Baker, TA., Stephen, PB., Alexander, G., Levine, M., Losick R.	Molecular Biology of the Gene	Pearson Education	-	978- 9332585478	912
Tropp, B.E.	Molecular Biology Genes to proteins	Jones and Bartlet		978-93- 80853-49-9	1096

MBO605: Practicals in Microbiology -II

L	Т	Р	Total Credits
0	0	4	4

<u>Course Objectives</u>- This course will teach students about practical aspects of Molecular biology, protein purification, enzyme assays, microbiology and immunological techniques.

Course content and syllabus

		Teaching Hours
Unit I	: Molecular biology	36 hrs
1.	Isolation of genomic DNA from bacteria/plant/animal cell	
2.	Isolation and purification of plasmid from bacteria.	
3.	Checking the purity of isolated DNA and DNA estimation using UV-	
	spectroscopy.	
4.	Restriction digestion of DNA. Agarose gel electrophoresis and estimation	
	of size of DNA.	
	: Protein expression, purification and enzyme assay	36 hrs
	Expression of recombinant protein.	
2.	Affinity purification and SDS-PAGE of purified protein	
3.	Isolation of enzymes from natural sources.	
4.	Enzyme assay of purified protein and determination of kinetic	
	parameters	
-	II: Microbial growth kinetics and antimicrobial studies	36 hrs
	Plotting standard bacterial growth curve and diauxic growth curve	
	Determination of plaque forming units	
	Antibiotic sensitivity test: agar diffusion method/disc method.	
	Synthesis of metallic nanoparticles and characterization.	
-	MIC and MKC determination.	00 h ==
	V: Immunotechniques	36 hrs
1.	Blood typing to find out individual's 'donor group' and 'recipient group' for transfusion of blood.	
2	Qualitative test for the determination of antigen by Dot ELISA.	
	Purification of IgG and analysis of purified IgG on SDS-PAGE.	
	Immunoassays based on diffusion/agglutination/ELISA.	
 5.	Demonstration/practical of Western blotting.	
0.	Bomonoration, practical of Wootorn blotting.	

Course Learning Outcomes: this course will teach students to

- 1. Understand the concepts behind DNA isolation techniques.
- 2. Isolation of enzymes and enzyme kinetics
- 3. Analysis of microbial growth kinetics and antimicrobial assays.
- 4. Applications of various immunotechniques.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Plummer, D.T.,	An Introduction to Practical Biochemistry	Tata McGraw- Hill	2017	978- 0070994874	332
Ponmurugan, P. and Prabhu, B. G.	Biotechniques	MJP Publishers	2021	978- 8180941191	696
Maheshwari, D.K.,	Practical Microbiology	S Chand & Company	2010	978- 8121921534	413

MBO604: Food and Industrial Microbiology

L	Т	Р	Total Credits
4	0	0	4

<u>Course Objectives:</u> After studying this course, the students will be able to understand the scope of food microbiology and food safety and will obtain the knowledge about microorganisms associate with food and their characteristics. Course content and syllabus

	Teaching Hours
Unit I: Introduction to Food and Industrial Microbiology	18 hrs
Brief history, development and interrelated scope of food and industrial microbiology. Types of microorganisms associated with foods and industrial processes. Factors affecting growth and survival of food/industrial microbes. Instrumentation and control strategies in food microbiology.	
Unit II: Microbial Food Spoilage and Food-Borne Diseases	18 hrs
Sources of microorganisms in foods, some important food spoilage	
microorganisms; Microbial spoilage of industrially important food products-	
milk and dairy products, meat, poultry and seafood, fruits and vegetables	
and canned products.	
Types of food-borne diseases –infections, intoxications and toxi-infections;	
Origin and symptoms of common food borne diseases and their preventive	
measures; Recent outbreaks and emergence of food pathogens.	
Unit III: Principles and Methods of Food Preservation, Sanitation and Quality Management	18 hrs
Principles of food preservation: physical methods viz. high temperature	
preservation (D, Z and F Values). Preservation by drying, chemical	
preservatives and natural antimicrobials. Application of bio-protective	
cultures in food preservation. Advanced and modified packaging	
techniques used in industries for improvement in product shelf life. Food	
sanitation quality control and management – HACCP, FSSAI, Codex,	
ISO22000.	
Unit IV: Strategies for Industrial Food Production and Analysis	18 hrs

Microorganisms and processes involved in the production of single cell protein and industrial alcohol, beer and wine, organic acids (citric and lactic), antibiotics, enzymes and vitamins. Microorganisms and processes involved in the production of fermented foods. Qualitative and quantitative enumeration of food microbes; conventional and automated ones. Rapid methods- immunoassays, PCR, ELISA.

Course Learning Outcomes:

- Understanding of interactions between microorganisms and the food environment, and factors influencing their growth and survival.
- Developing students' perspectives on the use of basic and advanced microbiological methods for analysis of industrial food products.
- Enhancing the ability of students for comparing various physical and chemical methods used in the control of microorganisms.
- Empowering students with a knowledge on production of different industrial products from microorganisms that might help them in enhancing their career building and entrepreneurship skills.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Frazier,W.C. and Westhoff, D. C. 2004	Food Microbiology. 5th edition	McGraw Hill	2017	978- 1259062513	512
Jay, J. M. 1992	Modern Food Microbiology	Springer- Verlag New York Inc.	2002	978- 0387231808	790
Okafor, N. 2007	Modern Industrial Microbiology and Biotechnology	CRC Press; 1st edition	2007	978- 1578085132	550
Ray, B. 2004.	Fundamental Food Microbiology 3 rd	CRC Press, Washington D.C. USA.	2013	978- 1466564435	665

Waites, M. J. 2001.	Industrial	Blackwell Science, London.	978- 0632053070	304
Crueger W and Crueger A. (2000).	Industrial Microbiology	Panima Publishing Company, New Delhi.	978- 9385998638	192
i lanev and	Microbiology.9t	McGraw Hill Higher education.	 978- 0073402406	2272

Essentials in Biotechnology

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: The objective of this course is to provide students with in-depth knowledge of conceptssignificant to crack CSIR-NET, ICAR-JRF, ICMR-JRF, GATE-Biotechnology.

Course content and syllabus

	Teaching Hours
Unit I: Biomolecular structure and function	18 hrs
Structure of atoms, molecules and chemical bonds. Composition, structure and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins). Stablizing interactions. Principles of biophysical chemistry. Bioenergetics, glycolysis, oxidative phosphorylation, coupled reaction, group transfer, biological energy transducers. F. Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isozymes. Protein and Nucleic acid structure and function.	
Unit II: Cellular Organization	18 hrs
Cell wall and cell membrane, structural organization and function of cell organelles, organization of genome, cell division and cell cycle (Mitosis, meiosis and regulation), autophagy, apoptosis, cell transformation and cancer.	
Unit III: Fundamental Processes	18 hrs
DNA replication, repair and recombination, RNA synthesis and processing, Protein synthesis and processing, Control of gene expression at transcription and translation level	
Unit IV: Recombinant DNA Technology	18 hrs
Enzymes-applications in RDT, DNA/RNA isolation and purification, Molecular cloning of DNA and RNA in bacterial and eukaryotic systems, Plasmid, phage, cosmid, BAC and YAC vectors, in vitro mutagenesis, DNA sequencing, nucleic acid amplification, DNA polymorphism-RFLP,RAPD, AFLP.	

(Total Teaching = 72 hrs)

Course Learning Outcomes:

1. Gain knowledge about various biomolecules and their associated functions.

- Understanding the concepts of cellular organization and regulation. Perceive knowledge of central dogma of life. Develop ability to use various techniques of RDT in research work. 2.
- 3.
- 4.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Lubert Stryer, John L Tymoczko andGregory J. Gatto	Biochemistry	W.H. Freeman Company	2015	1319114652	1208
H. Lodish	Molecular cellbiology	W.H. Freeman Company	2016	978- 1464187445	1280
Watson JD, Baker TA, Stephen PB, Alexander G,Lewin M, Losick R	Molecular Biology of thegene	Pearson Ed.	7 th	978- 9332585478	912
J. Sambrook, E.F. Fritsch and T. Maniatis	Molecular cloning: a laboratory manual	Cold Spring Harbour Laboratory Press	1989	0879695756	2344

BCH610: Topics in Life Sciences

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: The objective of this course is to provide students with in-depth knowledge of conceptssignificant to crack CSIR-NET, ICAR-JRF, ICMR-JRF, GATE-Biotechnology.

Course content and syllabus:

	Teaching Hours
Unit I: Inheritance Biology	18 hrs
Mendelian principles: Dominance, segregation, independent assortment. Concept of gene: Allele, multiple alleles, pseudo allele, complementation Tests. Extensions of Mendelian principles: Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited, and sex influenced characters. Gene mapping methods: Linkage maps, tetrad analysis, mapping with molecular markers, mapping by using somatic cell hybrids, development of mapping population in plants. Extra chromosomal inheritance: Inheritance of Mitochondrial and chloroplast genes, maternal inheritance. Recombination: Homologous and non-homologous recombination including transposition.	
Unit II: Genetic Variations	18 hrs
Human genetics: Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders.	
Quantitative genetics: Polygenic inheritance, heritability and its measurements, QTL	
mapping.	
Mutation: Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal verses somatic mutants, insertional mutagenesis.	
Unit III: Cell Communication and Cell signaling	18 hrs
G-Protein Molecular Organization, Structural Features of G Protein Activation, Structural Determinants of Receptor–G-Protein Specificity; Cytokine Signalling Proteins: JAK Structure and Localization, JAK-STAT pathway, RTK, Nuclear receptors	
, STAT Structure and Function, Inhibition of Cytokine Signalling	

Integrins, cadherins, Ras-MAPK pathway, Hedgehog, PI3K, Notch, Serine/Threonine pathways, lipid signalling	
Unit IV: Developmental Biology	18 hrs
Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development. Use of Drosophila as model organism for studying developmental biology.	
Production of gametes, cell surface molecules in sperm-egg recognition in animals; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals; embryogenesis.	

Course Learning Outcomes:

1. Gain knowledge about Mendelian principles and various exceptions to it.

2. Understanding the concepts of enzymes and biochemical processes.

3. Perceive knowledge of mechanisms used by the human body to fight foreign agents and disease-causing pathogens.

4. Discriminate between various techniques with respect to their applications.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Gardner EJ, Simmons MJ,Snustad DP	Principles of Genetics	Wiley-India	6 th /2008	978- 0471291312	480
Peter F Stanbury, Allan Whitaker, Stephen J Hall	Principles of Fermentation Technology	Butterworth- Heinemann Press. UK	2016	978- 0070492585	367
J. Owen, J.Punt, S. Stranford	Kuby Immunolog y(8 th Edition)	WH Freeman and Company, USA	2018	978- 1319114701	944
D. Male, J. Brostoff, D.	Immunolog y(8 th Edition)	Saunders, Elsevier, USA	2017	978- 1118415771	576

Roth, I. Roitt					
Walker J.	Principle and Techniques of Biochemistry and Molecular Biology	•	2010	978- 0521178747	744

BCH605: Advanced Enzymology

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: The objective of the course is to provide a deeper insight into the fundamentals of enzyme structure and function and kinetics of soluble and immobilized enzymes. Also it deals with current applications and future potential of enzymes.

Course content and syllabus

	Teaching Hours
Unit I: Enzyme Kinetics	
Concept of convergent and divergent evolution of enzymes; Purification of enzymes: strategy & criteria of enzyme purity, judging the success of purification procedure; Kinetics of multi substrate enzyme catalyzed reactions: classification, kinetics of multisubstrate reactions, Investigation of reaction mechanism by using initial velocity, inhibition and isotope exchange studies; Practical aspects of kinetic studies: Enzyme assays, coupled assays, Reaction conditions optimization (pH, temperature, substrate concentration).	18 hrs
Unit II: Chemical mechanisms of enzyme catalysed reactions	
Methods of pre-steady state analysis: Rapid mixing and sampling techniques, Relaxation methods, Absolute concentration of enzymes, Sigmoidal Kinetics: Cooperativity phenomenon for protein ligand binding, symmetric & sequential models for action of allosteric enzymes and their significance, Hill and Scatchard plots.	18 hrs
Unit III: Investigating the active site structure	
Identification of active site of enzymes: By trapping of enzyme-substrate complex, use of substrate analogues, enzyme modification by chemical procedures affecting amino acid side chains, treatment with class-specific inhibitors and site-directed mutagenesis, by studying the effect of changing pH. A brief account of investigation of three dimensional structure of active site, Structures & mechanisms of selected enzymes: Dehydrogenases, proteases, ribonuclease and lysozyme.	18 hrs
Unit IV: Enzyme turnover	
Enzyme turnover: Kinetics of turnover, methods for measuring rates of enzymes turnover, Correlation between rates of turnover and the structure and functions of enzymes, Mechanism of enzyme degradation, significance of enzyme turnover.	18 hrs

Course Learning Outcomes:

1. Comprehensive understanding of enzyme kinetics and thermodynamics with intention of concept application in enzyme research.

- 2. To enhance the knowledge in the application of enzymes in food, pharmaceutical, and green chemistry industry.
- 3. A thorough understanding of the techniques of enzyme engineering.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Ram Sarup Singh, Reeta Rani Singhania, Ashok Pandey, Christian Larroche	Enzyme Technology - A volume in	Elsevier	2019	978-0-444- 64114-4	-
N. S. Punekar	Enzymes: Catalysis, Kinetics and Mechanisms	Springer	2018	978-981-13- 0784-3	562

PSY610: Behavioural Science -II

L	Т	Р	Total Credits
1	0	0	1

Course Contents/syllabus:

	No. of
	Session
Unit-1- Individual differences & Personality	5 hrs
Personality: Definition& Relevance	
Importance of nature & nurture in Personality Development	
• Importance and Recognition of Individual differences in Personality	
 Accepting and Managing Individual differences Intuition, Judgment, Perception & Sensation (MBTI)BIG5 Factors 	
Unit-2- Managing Diversity	4 hrs
Defining Diversity	
Affirmation Action and Managing Diversity	
Increasing Diversity in Work Force	
Barriers and Challenges in Managing Diversity	
Unit-3- Socialization, Patriotism and National Pride	5 hrs
Nature of Socialization	
Social Interaction	
Interaction of Socialization Process	
Contributions to Society and Nation	
Sense of pride and patriotism	
Importance of discipline and hard work	
Integrity and accountability	
Unit-4- Human Rights, Values, and Ethics	4 hrs

- Meaning and Importance of human rights
- Human rights awareness
- Values and Ethics- Learning based on project work on Scriptures like-Ramayana, Mahabharata, Gita etc.

List of Professional Skill Development Activities (PSDA):

- 1. Project on Understanding Diversity
- 2. Term Paper on Patriotism among Youth

Course Learning Outcomes: On completion of the course:

- 1. To recognize individual differences
- 2. To mange individual differences
- 3. To develop patriotic feelings
- 4. To recognized their self in relation to society & nation

AUTHOR	TITLE	Publisher	Year of	ISBN	Pages
			publication		
Department of English, Unive rsity of Delhi	The Individual& Society	Pearson Education	2010	978- 8131704172	266
Umang Malhotra	Individual, Society, andthe World	iUniverse	2004	978- 0595662401	188
Tonja R. Conerly & Kathleen Holmes	Introduction to Sociology 3e	Openstax	2015	97817114939 78	458
Daksh Tyagi	"A Nation of Idiots"	Every Protest	2019	978- 8194275015	350

FOL103: French Grammar

L	т	Р	Total Credits
1	0	0	1

Course content and syllabus

		Teaching Hours
Un	it I: My family and my house	5 hrs
•	Descriptors/Topics	
•	Talk about your family members	
•	Usage of possessive adjectives	
•	Describe your house/apartment	
•	Prepositions of location	
•	Negation	
Un	it II: Lifestyle	4 hrs
•	Descriptors/Topics	
•	Talk about your hobbies and pastimes	
•	Usage of appropriate articles : definite and contracted	
•	Talk about your daily routine	
•	Usage of pronominal verbs	
Un	it III: In the city	5 hrs
•	Descriptors/Topics	
•	Filling up a simple form	
•	Ask for personal information	
•	Usage of interrogative adjectives	
•	Give directions about a place	
•	Ordinal numbers	
•	Usage of demonstrative adjectives	
Un	it IV: Week-end	4 hrs

- Descriptors/Topics
- Talk about your week-end plans
- Usage of disjunctive pronouns
- Usage of Near Future tense
- Talk about weather
- Write a simple post card

Course Learning Outcomes: At the end of this course, the students will be able to interact in a simple way on everyday topics. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At theend of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyze and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Ed/year	ISBN No	Pages
Christine Andant, Catherine Metton, Annabelle Nachon, Fabienne Nugue	A Propos - A1,Livre de l'élève et Cahier d'exercices.	Langers International Pvt. Ltd.	2010	978- 9380809069	
Collins Dictionaries	Easy Learning French Complete Grammar, Verbs and Vocabulary	Collins	2016	978- 0008141721	

Nikita Desai,	Apprenons	Langers	2017	978-	
Samapita	La	International		8193002681	
DeySarkar	Grammaire	P∨t. Ltd.		0193002001	
	Ensemble -				
	French				

FOL104: German Grammar

L	т	Р	Total Credits
1	0	0	1

Course content and syllabus

		Teaching Hours
	nit I: Time (Uhrzeit); People and the World: Land, Nationalität und prache	5 hrs
•	Introduction of time	
•	Read text related to time and teach the students the time expressions	
•	Exercises related to Time	
•	Adverbs of time and time related prepositions	
•	Vocabulary: Countries, Nationalities, and their languages	
•	Negation: "nicht/ kein"	
•	Ja/Nein Fragen.	
•	All the colors and color related vocabulary, adjectives, and opposites	
•	Exercises and comprehension for the same	
U	nit II: Irregular verbs (unregelmässige Verben)	4 hrs
•	Introduction to irregular verbs and their conjugation e.g. fahren, essen, lesen etc	
•	Read a text related to the eating habits of Germans	
•	Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs	
•	Free time and hobbies	
•	Food and drinks	
	nit III: Accusative case: articles and pronouns (Akkusativ Kasus: rtikel undPronomen)	4 hrs
•	Introduction to the concept of object (Akkusativ)	
•	Formation of sentences along with the translation and differencebetween nominative and accusative articles	
•	Usage of accusative Definite articles	
•	Usage of accusative Indefinite articles	

	nit IV: Accusative case: possessive pronouns (Akkusati Kasus: ossessivpronomen) Family and Relationship	5 hrs
•	Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things.	
•	Usage of accusative Personal Pronouns	
•	Introduction of accusative possessive pronouns	
•	Difference between nominative and accusative possessive pronouns	
•	usage of accusative possessive pronouns	

Course Learning Outcomes: After completing these modules, the students will be capable of constructing sentences with possessive and demonstrative adjectives in German. In addition, they will be proficient in formulating meaningful sentences as they will be capable of applying their knowledge of all the irregular verbs they have learnt during the session. They will also have an idea of German culture by studying about various German festivals.

At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Ed/year	ISBN No	Pages
Dora Schulz,	Deutsche	Max Hueber	1984	978-	
Heinz	Sprachlehre	Verlag		3190010066	
Griesbach	Fur Auslander				
Hartmut	Themen	Max Hueber	2003	978-	
Aufderstrasse	Aktuell:	Verlag		3190816903	
, Jutta Muller,	Glossar				
Helmut	Deutsch				
Muller					
Giorgio Motta	Wir Plus	Goyal	2011		248
	Grundkurs	Publishers			

Deutsch fur			
Junge Lerner			
Book German			
Guide			

S.No	Course Code	Course Title	Course Type		Credits				Credit Units
				L	Т	Ρ	FW	SW	
1	BTY701	Advanced Bioinformatics	Core Course	4	0	0	0	0	4
2	BTY702	Genetic Engineering and Recombinant DNA Technology	Core Course	4	0	0	0	0	4
3	MBO701	Practicals in Microbiology-III	Core Course	0	0	2	0	0	2
4	CBA705	Fundamentals of BioEntrepreneurship	Core Course	2	0	0	0	0	2
5	STA701	Biostatistics	Core Course	2	0	0	0	0	2
5	NTCC	Seminar	NTCC	0	0	2	0	0	2
6	NTCC	Dissertation -I	NTCC	0	0	8	0	0	8
6	PSY706	Professional Ethics and Responsibilities -I	Value Added Course	1	0	0	0	0	1

Programme structure for M.Sc. (H) Microbiology- 2 years (3rd Semester)

Total Credits

25

BTY701: Advanced Bioinformatics

L	Т	Р	Total Credits
4	0	0	4

Course objective: By the end of this course, the students will have acquired a solid foundation in bioinformatics, encompassing essential concepts, tools, and techniques for the analysis of biological data.

Course content and syllabus

	Teaching
	Hours
Unit I: Biological Databases	18 hrs
Nucleotide and Protein databases: Primary, secondary and composite database: genbank, EMBL, DDBJ, Uniprot, Swissprot, PIR, PDB, Genpepts, SCOP, CATH, Pfam.NCBI, EBI, DDBJ. nucleotide sequence flat iiles. Sequence formats: Genbank, FASTA, ASN.	
ntroduction to metabolic pathway databases on the web-KEGG, EcoCyc, Metacyc.Enzyme databases- BRENDA, LIGAND database. Molecular visualization softwares: RasMol, Pymol, Cn3D, VMD etc.	
nformation retrieval from biological databases- NCBI resource, Entrez, Pubmed,MEDLINE.	
Unit II: Sequence Alignment	18 hrs
Introduction to sequence alignment: Pairwise Sequence Alignment, Global alignmentand Local alignment, general, gap and affine penality. DotPlot, Scoring functions, Substitution Matrices- PAM and BLOSUM matrices. Dynamic Programming- implementation of the Needleman and Wunsch algorithm and Smith Waterman Algorithm for pairwise alignment and testing alignment score	
Multiple Sequence Alignment- consensus sequence, motifs and profiles. SP (Sum of Pairs) measure.Progressive method of of Sequence Alignemnt: Clustal W, Clustal X, T- COFFEE	
Unit III: Sequence Database search and Protein Structure Prediction	18 hrs
Sequence database search using BLAST and FASTA. Word method and k- tuple methodof sequence alignment. Significance of alignment score: E-value and bit-score, p-vaue.Variants of BLAST-blastN, blastP, blastX, TblastN, TblastX. Hidden Markov Model, Position Specific Scoring Matrix	

Methods to predict tertiary structure of proteins: Homology modelling, threading, ab-initio modelling	
Unit IV: Gene Prediction and Phylogenetics	18 hrs
Prediction of Genes in Prokayrotes and EukaryotesPrediction of Promoter and regulatory Elements.	
Introduction to Phylogenetics: Gene Phylogeny v/s Species Phylogeny.	
Phylogenetic tree construction: forms of tree representation, methods, and programs	

Course Learning Outcomes: at the end of this course, students will learn to

- 1. Search various biological database and extract biologically relevant information
- 2. Perform pair-wise and multiple sequence alignment
- 3. Search sequence database to identify homologous sequences in other organisms
- 4. Predict protein structure, gene promoter and regulatory elements and compare genomes.

Author	Title	Publisher	Ed/year
Xiong, Jing	Essentials of	Cambridge	2007
	Bioinformatics	University	
Mount, D.W.	Bioinformatics:	Cold	2 nd Ed

Text / Reference Books:

Xiong, Jing	Essentials of	Cambridge	2007	978-	352
	Bioinformatics	University		0521706100	
Mount, D.W.	Sequence and	Cold Springer Harbor Lab Press	-	978- 9746520706	692
Lesk, A.M.		Oxford University Press	-	978- 0198724674	376

ISBN No

Pages

BTY702: Genetic Engineering and Recombinant DNA Technology

L	т	Р	Total Credits
4	0	0	4

Course Objectives: Explore the fundamental principles of genetic engineering and recombinant DNA technology. Develop a deep understanding of techniques for gene manipulation and their applications in biotechnology and medicine.

Course content and syllabus

	Teaching Hours
Unit I: Genetic Recombination	18 hrs
Basic laws of Mendelian Genetics, Yeast Genetics as a tool to understand unlinked and liked genes, Tetrad analysis, linkage analysis, Measurement of genetic distance, Single nucleotide polymorphisms, Haplotype analysis, Haplotype as a tool for measuring genetic variation and relatedness,	
Unit II: Genetic manipulation mechanisms	18 hrs
Restriction-Modification systems in bacteria, cloning by complementation and selection, screening versus selection, Molecular mechanism of genetic recombination- homologous recombination, non homologous end-joining, RecBCD, Rec A and RuvABC systems, Eukaryotic recombinases like Rad51, Cre-Lox system of recombination, Gene knockout and knock-in strategies, CRISPR, TALENs, ZFN nucleases, Gene therapy	
Unit III: Gene knock-down strategies	18 hrs
Heterochromatin and euchromatin, Anti-sense methods of gene silencing, RNA interference, discovery and mechanisms in plants, animals and yeast, role of Dicer, Rdp and Ago1, Role in RNA degradation and link with heterochromatin silencing, miRNA and translational suppression and applications, gene silencing and DNA methylation, X-inactivation, role of RNA in X-inactivation	
Unit IV: Other genetic manipulation approaches	18 hrs
Other recombination systems, like RNA splicing, protein splicing, RNA editing, DNA cloning vectors in bacteria, yeast, plants and animals, bacteriophage vectors and systems of transformation, Design of expression vectors in different species, library construction vectors, DNA elimination in Trypanosomes	

Course Learning Outcomes:

Students will be able to:

- 1. Understand basic concepts of DNA integrity and genetic alterations.
- 2. Understand the concept of DNA cloning and vector
- 3. Understanding objectives and methods of knock-in and knockout techniques
- 4. Understand various genetic tools available for genetic manipulation in different organism

Author	Title	Publisher	Ed/year	ISBN No	Pages
J. Sambrook, E. F. Fritsch, and T. Maniatis, 2ndEdn.,	Molecular cloning: A laboratory manual,	Cold Spring Harbor Laborator yPress	3rd Ed	978- 0879695767	2344
T.A. Brown	Gene Cloning and DNA Analysis - An introduction	Wiley - Blackwell	2010	97814051817 3 0	338
D. Voet, J. G Voet and C. W. Pratt	Fundamentals of Biochemistry, 5 th Edition	John Wiley	5 th edition, 2016	978-1-118- 91840-1	1184
D.L. Nelson and M.M. Cox	Lehninger Principles of Biochemistr y	Mcmillan	8 th Edition	13: 978-1- 319-32234-2 (epub)	4381

MBO701: Practicals in Microbiology -III

L	т	Р	Total Credits
0	0	2	2

Course Objectives: This course will teach students about use of various bioinformatics tools, uses of microbes in industries and gene cloning methods

Course content and syllabus

		Teaching Hours
Uni	t I: Biological Databases	18 hrs
1.	Pubmed search	
2.	Retrieval of DNA and Protein sequences from biological databases	
3.	Use of RCSB (protein data bank) to download 3D structures of biological molecules	
	and use of softwares like Rasmol, ICM Browser, Pymol to display them.	
4.	Identify introns, exons and promoter region in a DNA sequence	
5.	Identify conserved sequence motifs in protein sequence	
Uni	t II: DNA and Protein Sequence Analysis	18 hrs
1.	Pairwise and Multiple sequence alignment of DNA using clustal (or any other	
	software)	
2.	Pariwise and Multiple sequence alignment of Proteins using clustal (or any other	
	software)	
	Performing BLAST search	
	Phylogenetic tree construction using maximum likelihood algorithm	
	Creating heatmaps, volcano plots, and principal component analysis of Omics data	
	t III: Industrial Microbiology	18 hrs
	Isolation of industrially important microorganism for industrial process	
	Fermentation of Ethanol	
3.	Estimation of ethanol by potassium dichromate method and establish calibration	
l l m	curve	10 hrs
-	t IV: Gene Cloning	18 hrs
	Gene cloning – Concepts and design of vectors Restriction digestion of PCR fragments, Gel extraction	
	Klenow fragment, Alkaline phosphatase, T4 polynucleotide kinase and their	
0.	application in Gene cloning	
4.	DNA ligation – basic; concepts of NEB Builder assembly, and Golden Gate	
	assembly	
5.	Gene Transformation in <i>E. coli</i> and selection of positive clones	
	·	

Course Learning Outcomes: this course will teach students to-

- Use biological database
- Compare protein and DNA sequences

- Use of microbiology in industriesMethods in gene cloning

Author	Title	Publisher	Ed/year	ISBN No	Pages
Plummer, D.T.,	An Introduction to Practical Biochemistry	Tata McGraw- Hill	2017	978- 0070994874	332
Ponmurugan, P. and Prabhu, B. G.	Biotechniques	MJP Publishers	2021	978- 8180941191	696
Maheshwari, D.K.,	Practical Microbiology	S Chand & Company	2010	978- 8121921534	413

CBA705: Fundamentals of BioEntrepreneurship

L	т	Ρ	Total Credits
2	0	0	2

Course Objectives: To help students gain understanding of the basic concepts of entrepreneurship, diagnose new business opportunities, formulate business plans, and identify different institutional support available to the entrepreneurs.

Course Content/ Syllabus

	Teaching Hours
Unit I: Basic Concepts of Entrepreneurship	9
Introduction to Entrepreneurship: Meaning, Background, Importance, The Benefits of Entrepreneurship, The Potential Drawbacks of Entrepreneurship, Factors that Influence Entrepreneurship, How to Avoid the Pitfalls, Factors Responsible for Entrepreneurship Growth; Entrepreneur Background and Characteristics; Entrepreneurial Potential in a Prospective Entrepreneur; Entrepreneurial Skills and Competencies; Types of entrepreneurs and entrepreneurship, Myths and Realities about Entrepreneurs; New Trends in Entrepreneurship Development; Economic Development through Entrepreneurship; Role of Entrepreneurship in the Economic Development of India	
Unit II: Understanding Creativity and Innovation	9
Creativity and innovation, Role of Creativity & Innovation in Entrepreneurship, Sources of New Ideas – Consumers, Existing Products and Services, Distribution Channels, Federal Government, Research and Development; Methods of Generating Ideas – Focus Groups, Brainstorming, Brainwriting, Problem Inventory Analysis; Creative Problem Solving – Brainstorming, Reverse Brainstorming, Brainwriting, Gordon Method, Checklist Method, Free Association, Forced Relationships, Collective Notebook Method, Attribute Listing Method, Big-dream Approach, Parameter Analysis, Mind Mapping, Force-Field Analysis, TRIZ, Rapid Prototyping; Innovation, Types of Innovation – Breakthrough, Technological, and Ordinary Innovation; Opportunity Recognition	
Unit III: Product Planning and Development Process & Business Plan Development	9
Product Planning and Development Process – Idea Stage, Concept Stage, Product Development Stage, Test Marketing Stage, and Commercialization Stage; Technology Readiness Levels; Intellectual Property Rights; Business Plan Development: Introduction, Business Plan, Various Business Models – The Business Model Canvas, The Lean Canvas, Types of Business Plans, Structure of a Basic Business Plan, Creating a Business Plan	

Unit IV: Sources of Capital and Institutional Support for Entrepreneurs	9
Sources of Funding for Entrepreneurs: Bootstrapping, Friends and Family Members, Crowdfunding, Angel Investment, Venture Capital, Financial Institutions, Bank Loans, Trade Credit, Initial Public Offerings/Issue of Shares, Debentures; Role of Government in Promoting Entrepreneurship: Atal Innovation Mission, Biotechnology Industry Research Assistance Council, Department of Science and Technology, Digital India, Jan Dhan-Aadhaar-Mobile, Make in India, National Skill Development Mission, Pradhan Mantri Kaushal Vikas Yojana, Science for Equity Empowerment and Development, Stand-Up India, Start-Up India, Support to Training and Employment Programme for women, Trade-Related Entrepreneurship Assistance and Development, USAID	

Course Learning Outcomes: On completion of the course, the student shall be able to:

- Understand the concept of entrepreneurship, its emergence and its need for society.
- Formulate a business idea and diagnose for a new business opportunity.
- Identify various business gaps and develop a business plan
- Evaluate and identify different institutional support available to the entrepreneur.

List of Professional Skill Development Activities (PSDA):

- Research on growth profile of an entrepreneur
- Identify opportunity, generate idea and conduct feasibility Analysis
- Design a Business Plan
- Develop an Entrepreneur Journal where reflection and personal experiences will be recorded
- Write personal insights, lessons learned, other readings, and the video clips you watch in this semester
- Interview one entrepreneur mentor and come up with five good business questions you would like to ask him or her
- Comparative study of startups in the field of Biopharmaceuticals, Bioagriculture, Bioindustry, and Bioservices.

Pedagogy for Course Delivery: The course will be taught using theory and case-based method. Blended mode of teaching-learning will be adopted. The students would be provided with content in form of study material, articles and videos. Instructor would lay emphasis on explaining basic concepts included in the course. PSDAs shall form part of internal assessment.

Author	Title	Publisher	Year of publication	ISBN	Pages
Evan J. Douglas	Entrepreneuria I Intention: Past, Present, and Future Research	Edward Elgar Publishing	2020	978-1-78897- 522-3	216
Justin G. Longenecker, J. William Petty, Leslie E. Palich, and Frank Hoy	Small Business Management: Launching & Growing Entrepreneuria I Ventures (20 th Edition)	Cengage	2023	978-0-3577- 1880-3	712
Mike Kennard	Innovation and Entrepreneurs hip	Routledge	2021	978-0-367- 51057-2	114
Debasish Biswas and Chanchal Dey	Entrepreneurs hip Development in India	Routledge	2021	978-0-367- 76219-3	117
Robert D. Hisrich, Micheal P. Peters, Dean A. Shepherd, Sabyasachi Sinha	Entrepreneurs hip (11 th Edition)	McGraw Hill	2020	978- 9390113309	696
Donald F. Kuratko and Jeffrey S. Hornsby	New Venture Management: The Entrepreneur's Roadmap for Development, Management, and Growth (3 rd Edition)	Routledge	2020	978- 0367466725	356
Bruce R. Barringer and R. Duane Ireland	Entrepreneurs hip: Successfully Launching New Ventures (6 th Edition)	Pearson	2019	978-1-292- 25533-0	617
Norman M. Scarborough	Essentials of Entrepreneurs hip and Small	Pearson	2019	978-1-292- 26602-2	827

and Jeffrey R. Cornwall	Business Management (9 th Edition)				
Mary Jane Byrd and Leon Megginson	Small Business Management: An Entrepreneur's Guidebook (8 th Edition)	McGraw Hill	2017	978- 1259538988	496
Robert D. Hisrich and Veland Ramadani	Effective Entrepreneuria I Management: Strategy, Planning, Risk Management, and Organization	Springer	2017	978-3-319- 50465-0	230
Stephen Spinelli, Jr. and Robert J. Adams, Jr.	New Venture Creation: Entrepreneurs hip for the 21st Century (10 th Edition)	McGraw-Hill Education	2016	978-0-07- 786248-8	484
David H. Holt	Entrepreneurs hip: New Venture Creation	Pearson	2016	978- 9332568730	584
Peter F. Drucker	Innovation and Entrepreneurs hip	Harper Business	2006	978- 0060851132	288
Robert J. Calvin	Entrepreneuria I Management	McGraw-Hill	2005	97800714509 28	295
Steve Mariotti	Entrepreneurs hip and Small Business Management	Pearson publishers	2014	978- 0133767186	

STA701: Biostatistics

L	Т	Р	Total Credits
2	0	0	2

Course Objectives: Master statistical methods applied to biological data analysis. Develop skills to interpret and critically assess research findings in biological sciences.

Course Contents/syllabus:

	Teaching
	Hours
Unit I	9 hrs
Introduction to probability, measures of central tendency and measures of dispersion.	
Fundamentals Random variables: discrete and continuous and their properties	
Unit II	9 hrs
Transformation of random variable and Probability integral transformation,	
Discrete distributions and continuous distributions	
Unit III	9 hrs
Multiple random variable, Joint and Marginal distributions, Bivariate	
transformation, Covariance and correlation	
Unit IV	9 hrs
Random sample, and properties of random sample, Fundamental of Sampling	
distribution and hypothesis testing	

Course Learning Outcomes: On the successful completion of this course the student will be able to understand the

- 1. basics of the probability
- 2. concept of random variable and transformation of random variable
- 3. statistical distributions and their applications in the real-world problems
- 4. random sample and their properties

AUTHOR	TITLE	Publisher	Year of	ISBN

			publication	
Rohatgi V. K. andSaleh, A.K. Md. E.	An Introduction toProbability and Statistics	2 nd Edition, John Wileyand Sons	2009	9788126519262, 9788126519262
Casella G. andBerger R. L.	Statistical Inference	2 nd Edition, Cengage Learning India	2002	9788131503942, 9788131503942
Hogg R. V., Mckean J. andCraig A. T	Introduction to Mathematical Statistics	7 th Edition, Pearson Education India	2013	978933251911 4, 978933251911 4
Mukhopadhyay P	Mathematical Statistics	Books and Allied	2016	9788187134 930

PSY706: Professional Ethics and Responsibilities -I

L	Т	Р	Total Credits
1	0	0	1

Course content and syllabus

	Teaching
	Hours
Unit I: [Origins of Morality and Ethics]	5 hrs
Moral Diversity, Moral Universals, Evolution of Morality, Reciprocal Altruism Culture influence on our thought and action, Moral Differences, Kinds or Societies, Conservatives and Liberals, Disgust and Honor, Religion and Morality Morality as Part of Our Nature, Skepticism About the Self, Free Will and the Situation. Utilitarian Ethics (outcome based), Deontological Ethics (duty based) Virtue Ethics (virtue based), and Communitarian Ethics (community based).	
Unit II: [Research Design: Inquiry and Discovery]	4 hrs
The Process of Inquiry, What is Curiosity, The components of enquiry design. What is a theory, Using inquiry as individuals, Elements of Critical Thinking. Inquiry Approaches: Quantitative, Qualitative, and Mixed Methods Relationships Between Variables, Questions and Hypotheses Conceptualization and Operationalization, What is	
Literature Review?	
Unit III: [Gender justice and workplace safety]	4 hrs
Introduction to Gender Justice- Notion and Significance, International and Constitutional Perspectives on Gender Equality, Protection of Women at Workplace,	
Gender Violence- Within and Beyond	
Unit IV: [Gene technology and Ethics]	5 hrs
History of genetics and genomics, Recent Developments in Cloning, Cloning and Conservation, DNA Fingerprinting, Individual Identification and Ancestry Nex Generation Science Standards. Genomics in Medicine, Genetically Modified Organisms and food, Mapping Morality: The Rights and Wrongs of Genomics Societal implications	
of genetically modified organisms and food	

Course Learning Outcomes:

- 1. Learn the concept of ethics and morality.
- 2. How to design experimental research inquiry and discovery

- 3.
- Learn the problems of gender bias Ethical issue related with gene technology 4.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Daniel McGuire		Syrawood Publishing House	2016	978- 168286337 4	278
R. Subramanian		Oxford University press		978- 019947507 0	472

NTCC: Research Paper Presentation

L	Т	Р	Total Credits
0	0	2	2

Course Objectives: Learn effective techniques for presenting research papers to enhance communication skills and acquire strategies to deliver clear and engaging presentations of research findings for academic and professional audiences.

Course content and syllabus

Students will present the latest research/review article published in a reputed international peerreviewed journal.

NTCC: Dissertation -I

L	Т	Р	Total Credits
0	0	8	8

Course objectives: Undertake research work with an aim of conducting original research and gain proficiency in research methodologies and scholarly inquiries.

Course content and syllabus

The students will undertake research work under the supervision of a faculty member.

Programme structure for M.Sc. (H) Microbiology- 2 years (4th Semester)

Sr. No	Course Code	Course Title	Course Type		Credits				Credit Units
				L	Т	Ρ	FW	SW	
1	BTY601	Bioprocess Engineering and Technology	Core Course	4	0	0	0	0	4
2	MBO702	Medical Microbiology	Allied Course	4	0	0	0	0	4
3	HGM602	<u>Students will choose</u> <u>any one from the given</u> <u>choices*</u> 1. Synthetic Biology and Biofuels 2. Omics Technology and Applications 3. MOOC	Specialization Elective Course	4	0	0	0	0	4
4		Professional Ethics and Responsibilities -II	Value Added Course	1	0	0	0	0	1
5	NTCC	Dissertation -II	NTCC	0	0	12	0	0	12
		Total Crodits	L	1	I	I	I		25

Total Credits

25

*The Specialization Elective Course of 1st, 2nd, and 4th semestCers will be pooled together.

*The Specialization Elective Course can also be taken through MOOC. A maximum of 4 credits per semester can be taken through MOOC.

BTY601: Bioprocess Engineering and Technology

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: The objectives of this course are to educate students about the fundamental concepts of bioprocess technology and its related applications, thus preparing them to meet the challenges of the new and emerging areas of biotechnology industry.

Course content and syllabus

	Teaching Hours
Unit I: Introduction to Bioprocess Technology and Media Design for Fermentation	18 hrs
Bioprocess vs chemical processing, advantages, disadvantages, Substrates for bioconversion process, Isolation, Preservation Techniques and Maintenance methods of Industrial Microorganisms, Cell culture technique, Media composition and design Media type, Commercial media, Inoculum development and aseptic transfers, Criteria for inoculums transfer, (media formulation RSM, CCD,)	5
Unit II: Bioreactor design and analysis	18 hrs
Batch and continuous fermenters; modifying continuous reactors: chemostat with recycle, fed-batch operations- Variable Volume fed -batch, fixed volume fed-batch; conventional fermentation v/s biotransformation; immobilized cell systems; large scale animal and plant cell cultivation; upstream processing: media formulation and optimization; sterilization; aeration, agitation and heat transfer in bioprocess; scale up and scaledown; measurement and control of bioprocess parameters.	; 2
Unit III: Downstream processing and product recovery	18 hrs
Separation of insoluble products - filtration, centrifugation, sedimentation, flocculation, Celldisruption;separation of soluble products: liquid-liquid extraction, precipitation, chromatographic techniques, reverse osmosis, ultra and micro filtration, electrophoresis; final purification: drying; crystallization; storage and packaging	,
Unit IV: Applications of enzyme technology in food processing	18 hrs
Mechanism of enzyme function and reactions in process techniques; enzymatic bioconversions e.g. starch and sugar conversion processes; high-fructose corn syrup; interesterified fat; hydrolyzed protein etc. and their downstream processing; baking by amylases, deoxygenation and desugaring by glucoses oxidase, beer	

mashing and chill proofing; cheese making by proteases, and various other enzyme	
catalytic actions in food processing. (α amylase, pectinase, lactase)	

Course Learning Outcomes:

Students will be able to:

- Recall the concepts of design and formulation of production media for fermentation.
- Explain design and operations of various fermenters
- Identify unit operations together with the fundamental principles for basic methods in production technique for bio-based products.
- Compare different microbial/enzymatic industrial processes in food and fuel industry.

Author	Title	Publisher	Ed/year	ISBN No	Pages
M.L. Shuler and Fikret. Kargi, 2nd edition,	Bioprocess Engineering Basic Concepts,	Pearson Education Limited.	2013	9780136060659	957
W. Crueger and A. Crueger,	Biotechnology: A Textbook of Industrial Microbiology,	Sinauer Associates.	1990	0878931317	541

MBO702: Medical Microbiology

L	т	Ρ	Total Credits
4	0	0	0

Course Objectives: This course gives an advanced understanding of the principle of disease and epidemiology, the etiology of infectious diseases caused by microbial pathogens, and knowledge about the available diagnostic methods and their principles.

Course content and syllabus

	Teaching Hours
Unit I: Principle of disease Epidemiology and host pathogen interaction	18 hrs
Human Microflora: Importance of normal microflora, normal microflora of skin, throat, gastrointestinal tract, urogenital tract	
Host pathogen interaction : Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity, Carriers and their types, Opportunistic infections, Nosocomial infections. Transmission of infection, Pathophysiologic effects of LPS.	
Sample collection, transport and diagnosis : Collection, transport and culturing of clinical samples, principles of different diagnostic tests (ELISA, Immunofluorescence, Agglutination based tests, Complement fixation, PCR, DNA probes).	
Unit II: Advanced Biology of Bacterial and Viral diseases	18 hrs
Bacterial diseases : List of diseases of various organ systems and their causative agents.	
The following diseases in detail with Symptoms, mode of transmission, disease molecular biology, prophylaxis and treatment.	
Respiratory Diseases : Streptococcus pyogenes, Haemophilus influenzae, Mycobacterium tuberculosis	
Gastrointestinal Diseases : Escherichia coli, Salmonella typhi, Vibrio cholerae, Helicobacter pylori	
Others: Staphylococcus aureus, Bacillus anthracis, Clostridium tetani, Treponema pallidum, Clostridium difficile	
Viral diseases: List of diseases of various organ systems and their causative agents.	
The following diseases in detail with Symptoms, mode of transmission, disease molecular biology, prophylaxis and control: Polio, Herpes, Hepatitis, Rabies,	

Dengue, AIDS, Influenza with brief description of swine flu, Bird Flu, Ebola, Chikungunya, Japanese Encephalitis, Coronaviruses	
Unit III: Advanced Biology of Protozoan and fungal diseases	18 hrs
Protozoan diseases: List of diseases of various organ systems and their causative agents. The following diseases in detail with Symptoms, disease molecular biology, mode of transmission, prophylaxis and treatment: Malaria, Human African Trypanosomiasis, Kala-azar.	
Fungal diseases: Brief description of each of the following types of mycoses and one representative disease to be studied with respect to transmission, symptoms and prevention.	
Cutaneous mycoses: Tinea pedis (Athlete's foot).	
Systemic mycoses: Histoplasmosis. Opportunistic mycoses: Candidiasis	
Unit IV: Advanced concepts about different Antimicrobial agents and their mode of action	18 hrs
Antibacterial agents: Five modes of action with one example each: Inhibitor of nucleic acid synthesis; Inhibitor of cell wall synthesis; Inhibitor of cell membrane function; Inhibitor of protein synthesis; Inhibitor of metabolism.	
Antifungal agents: Mechanism of action of Amphotericin B, Griseofulvin.	
Antiviral agents: Mechanism of action of Amantadine, Acyclovir, Azidothymidine Antibiotic resistance, MDR, XDR, MRSA, NDM-1.	

<u>Course Learning Outcomes:</u> at the end of the course the students will:

- Have an advanced understanding about the epidemiology, biology and etiology of infectious diseases.
- Perceive advanced knowledge about the biology of various bacterial and viral diseases
- Perceive advanced knowledge about the biology of various protozoan and fungal diseases
- Understand the general characteristics and mechanism of action of different antimicrobial agents.

Author	Title	Publisher	Ed / year	ISBN No	Pages
Ananthanarayan R. and Paniker C.K.J.		University Press Publication	11 th ED /2009	9389211433, 978-9389211436	680
Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A.	,	McGraw Hill Publication		007181292X, 9780071812924	864
Willey JM, Sherwood LM, and	,	McGraw Hill Higher Education		0073402400, 9780073402406	1152

Woolverton CJ.	Microbiology. 9 th Edition				
Madigan MT, Martinko JM, Dunlap PV and Clark DP.	Biologyof	Pearson International Edition	14 th ED / 2014	0321897390, 978- 0321897398	1032

Synthetic Biology and Biofuels

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: After studying this course, the students will be able to understand the fundamentals of synthetic and system biology and apply them in their research areas

Course content and syllabus

	Teaching Hours
Unit I: Fundamentals of Synthetic Biology	18 hrs
Modern techniques of DNA assembly – NEBuilder HiFi DNA Assembly, Gibson Assembly, BioBrick Assembly, Golden Gate Assembly. Synthetic bacterial chromosome, synthetic yeast chromosomes for modular metabolic engineering, Genomic engineering using transposable elements in vertebrates	
Unit II: [Synthetic Networks]	18 hrs
Biological parts – Sensor Proteins (switches), Regulatable promoters, Models of gene expression, artificial networks, production of simple networks capable of producing genetic oscillators and toggle switches, consequences of gene expression variability, examples of synthetic networks – Biofuels and green chemicals.	
Unit III: [Fundamentals of System Biology]	18 hrs
Stochastic gene expression in prokarytoes and eukaryotes- extrinsic and intrinsic noise, re-wiring of genetic networks to perform cellular functions, Identification of functional units ("network motifs") within large gene interaction networks, a classic study of variability in bacterial gene expression, a classic study of variability in cultured cells, and quantitative PCR-based methods to count mRNAs in individual cells	
Unit IV: [Biofuels]	18 hrs
First, Second, third and fourth generation biofuels and technologies; types, microbial production of biofuels, lignocellulose - structure, degradation and role of enzymes, co-utilization of mixed sugars, cost analysis, genome editing of microbes to produce ethanol, butanol, jet-fuels, biodiesel, and bio-hydrogen	

Course Learning Outcomes:

- Understand basic concepts of synthetic biology.
- Learn to construct artificial gene networks and proteins.
- Learn the techniques to re-wire genetic networks.
- To know the areas of applications of synthetic biology.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Bas JHM Rosier, Tom FA de Greef	Synthetic Biology: How to make an oscillator	eLife Sciences Publications, Ltd	2015		
Edited By: Paul S Freemont (Imperial College, UK) and Richard I Kitney (Imperial College, UK)	Synthetic Biology — A Primer	World scientific	2012	ISBN: 978-1- 84816-863-3	196
Uri Alon,	An Introduction to Systems Biology: Design Principles of Biological Circuits	Chapman & Hall/CRC	2006	ISBN-13978- 1584886426	

HGM602: Omics Technology and Applications

L	Т	Р	Total Credits
4	0	0	4

Course Objectives: Explore the principles and methodologies of genomics, transcriptomics, proteomics, metabolomics, and microbiomics. Learn to apply cutting-edge bioinformatics tools for data analysis in various fields.

Course content and syllabus

	Teaching
	Hours
Unit I: Genomics	18 hrs
DNA sequencing methods- Sanger and Maxam-Gillbert method. Next- generation sequencing platforms. Techniques for genome research (chromosome walking, RFLP, chromosome capture techniques). Application of microbial genome variability forhuman welfare.	
Human genome sequencing project. Genome sequencing strategies: Hierarchical and whole genome shotgun sequencing. 100000 genome project.	
Unit II: Genome Evolution and Annotation	18 hrs
Evolution by Genome Expansion and ReductionMetagenomics	
Methods to Compare Genomes Archaeal Genomics	
Microbial Genome Annotation	
Genomics for pathogenic microbes – Search for better vaccines	
Unit III: Transcriptomics and Proteomics	18 hrs
Introduction to Transcriptomics: Methods to estimate RNA – RT-PCR, SAGE, RNAsequencing, direct RNA sequencing.	
Introduction to Proteomics: Methods to estimate proteins: 2D-PAGE, 2D- DIGE, ICAT,ITRAQ, SILAC.	
Importance of transcriptomics and proteomics in infectious and non-infectious diseases	
Unit IV: Metabolomics, Interactomics	18 hrs
Introduction to metabolomics and Interactomics. Experimental approaches to estimate metabolite levels. Fluxomics. High-throughput approaches towards Protein-protein and DNA-protein interactions	
Integrated (multi-omic) approaches in infectious and non-infectious diseases	

Course Learning Outcomes:

- To expose students in the multiple areas of omic technologies
- Students will learn about different approaches used in the areas of Genomics, transcriptomics, proteomics, metabolomics, and inteactomics
- Learn how different omic approaches is used to generate testable hypothesis
- Role of multi-omic approaches towards better understanding of infectious and noninfectious diseases

Author	Title	Publisher	Ed/year	ISBN No	Pages
Thomas J. Dougherty and Steven J. Projan	Microbial Genomics and Drug Discovery	CRC		978- 0824740412	264
A. Malcolm Campbell, Laurie J. Heyer	Discovering Genomics, Proteomics and Bioinformatics	Pearson Education	2007	978- 8131715598	464

Professional Ethics and Responsibilities – II

L	Т	Р	Total Credits
1	0	0	1

Course content and syllabus

Teaching
Hours
4 hrs
5 hrs
4 hrs
5 hrs

Course Learning Outcomes:

- Understand basic concepts of morality in mixed cultures.
- Learn to resolve the issues in research.
- Learn to create a bias free work culture.
- To learn the concept of Sustainability and Responsibility

Author	Title	Publisher	Ed/year	ISBN No	Pages
Rita Gupta	Sexual Harassment at Workplace, 2013	Lexis Nexis	2013	978- 9351430537	320

NTCC: Dissertation -II

L	Т	Р	Total Credits
0	0	12	12

Course objectives: Undertake research work with an aim of conducting original research and gain proficiency in research methodologies and scholarly inquiries.

Course content and syllabus

The students will undertake a research work under the supervision of a faculty member.