AMITY UNIVERSITY PUNJAB, MOHALI

Program structure for M.Sc. Computational Physics- 2 years (All Semesters)

Semester I	Semester II	Semester III	Semester IV
Numeical Methods and Analysis [CU:4; L-2, P-2] {CC}	Computational Physics [CU:4; L-2, P-2] {CC}	Simulation Techniques [CU:4; L-2, P-2] {CC}	Artificial intelligence and Machine Learning [CU:4; L- 4, P-0] {SE}
Quantum Mechanics (PHY601) [CU:4; L-4, P-0] {CC}	Classical Electrodynamics [CU:4, L- 4, P-0] {CC}	Particle Physics (PHY701) [CU:4; L-4, P- 0] {CC}	Adv. Nuclear Physics (PHY707) [CU:4; L-4, P-0] {CC}
Classical Mechanics (PHY611) [CU:4; L-4, P-0] {CC}		Condensed Matter Physics (PHY705) [CU:4; L-4, P-0] {CC}	Adv. Particle Physics (PHY706) [CU:4; L-4, P-0] {CC}
Statistical Mechanics (PHY703) [CU:4; L-4, P-0] {DSE}	Research Methodology [CU:4; L-4, P- {DSE}	<mark>0</mark> Nuclear Physics(PHY702) [CU:4; L-4, P-0] {CC}	
Physics Practical-I (PHY604) [CU:4, L-4, P-0] {DSE}	Quantum Field Theory [CU:4; L-4, P-0] {DSE}		Radiation Physics and Technology (PHY605)/Astro Physics (PHY614)/ Physics of Nanomaterials/Advanced Electrodyanmics/Accelerato r Physics [CU:4, L-4, P-0] {AC}
Electronics (PHY603) [CU:4, L- 4, P-0] {DSE}	Physics Practical-II (PHY609) [CU:4; L-4, P-0] {DSE}	Dissertation-I (FSCIDS601) [CU:8; L-0, P-0]	Dissertation-II (FSCIDS602) [CU:8; L-0, P-0]
	Advanced Mathematical Methods[0 L-4, P-0] {DSE}	:U:4;	
Self Development and Interpers Skills (PSY601) [CU:1, L-1] {VAC}	o Gal nflict Resolution & Management (PSY610) [CU:1, L-1] {VAC}		
Introduction to French Culture of Language (FOL101)/ Introduction German Culture & Language (Fo [CU:1, L-1] {VAC}	& French Grammar (FOL103)/ Germa n Ge ammar (FOL104) [CU:1, L-1] {VA DL102)	n C}	
26Cr	26 Cr	24Cr	24Cr
			Total Credits: 100

MOOC COURSES:

Code	Title	Credits
MOOC-I	Physics of Renewables Systems	4
MOOC-II	Relativity - A gentle introduction	3
MOOC-III	Nanophotonics, Plasmonics & Metamaterials	3
MOOC-IV	Introduction to Quantum Field Theory	3

<u>Semester-I</u>

Course Title: (Numerical Methods and Analysis)

L	т	Р	Total Credits
2	0	2	4

	Time(h)
Unit I: Introduction	9

Introduction to computational physics, Need of computational physics, Computer hardware, basic computer architecture, hierarchical memory, cache, latency and bandwidth, Moores law, power bottleneck, Software: compiled (Fortran, C) vs. interpreted languages (MATLAB, python); software management	
Unit II: Errors and Precision	9
Error analysis for round-off and truncation errors. Elements of Numerical Integration, Error estimates of Trapezoidal rule, Simpson midpoint and 3/8 rules, Integer representation; floating-point representation, Machine precision, error calculation	
Unit III: Interpolation	9
Composite Numerical Integration, Coupsion Quadrature using interpolating	
polynomials, special polynomials like Legendre polynomials, Multidimensional integrals - Two and three dimensional integration. Interpolation – Introduction, Polynomial interpolation; Lagrange Interpolation polynomial; Cubic Spline Interpolation, Neville's algorithm	
Composite Numerical Integration. Gaussian Quadrature dsing Interpolating polynomials, special polynomials like Legendre polynomials, Multidimensional integrals - Two and three dimensional integration. Interpolation – Introduction, Polynomial interpolation; Lagrange Interpolation polynomial; Cubic Spline Interpolation, Neville's algorithmUnit IV: Data Analysis	9

I ext / Reference Books:					
AUTHOR	TITLE	Publisher	Year of publication	ISBN	
S. Sastry	Introductory Methods of Numerical Analysis	PHI Learning Pvt. Ltd.	5th edition, 2012	9788120345928	
R.C. Verma	Computational Physics: An Introduction	New Age International	1st ed., 2005	9788122416596	
Atkinson, K E	Elementary Numerical analysis	Wiley India	3rd edition, 2003	9780471433378	
Humming, R W	Numerical methods for scientists and	Dover	2nd edition,		

	engineers	Publications	1987	9780486652412
Walker, Darren	Computational Physics	Mercury Learning and Information	Revised edition, 2016	9781942270737

Numerical Methods and Analysis Laboratory-I

Objectives: The major objective of this course is intended to be an Introduction to a programming Language (C/C++) as well as application for general mathematical problems.

- Introduction to Linux and Computer Programming Language (C/C++)
- Introduction to Graphics (Gnuplot etc.)s.
- Data and Statements : Data Types. Constants and Variables. Mathematical, Relational, Logical and Bitwise Operators. Expressions and Statements. Block, Local and Global variables. Auto, Static and External Variables
- I/O Statements : printf, scanf, getc, getch, getchar, getche, etc. Streams: cin and cout.
- Control Statements : If-statement. If-else Statement. Nested if Structure. Else-if Statement
- Unconditional and Conditional Looping. While Loop. Do-while Loop. For Loop.
 Break and Continue Statements.
- Loops.
- Arrays and Structures : One and Two Dimensional Arrays. Idea of Structures.
- Functions and Classes: Standard Library Functions, User-defined Functions. Void Functions and Functions returning Values,

- Classes, Objects, Idea of Strings and Pointer
- C++ program of matrix multiplication.
- C++ Programs on Random number generation and tests of randomness.
- C++ program to find reverse of number by defining functions outside class.
- C++ Program to calculate Volume of Cube using constructor and destructor.
- C++ program for various Mathematical Operations using Switch case.
- C++ Programs on Measurement of central moment, correlation coefficients using classes.
- C++ Programs on Least squares fitting for linear and general equations.
- C++ Programs on Numerical Differentiation
- C++ Programs on Interpolation Lagrange interpolating polynomial Lagrange interpolation.
- C++ Programs on Cubic spline interpolation.
- C++ Programs on Root Finding (Bisection, Secant and Newton-Raphson Methods)

Course Title: Classical Mechanics

L	Т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Learning the knowledge of Newtonian physics from a single system of particles, generalized coordinates and D'Alembert' the Lagrangian formulations of classical mechanics, a appropriate physical problems	e particle to a s Principle and applications in	
CO2	Learn about the Hamilton's Principle, variational pr coordinates and Hamilton's equations	inciple, cyclic	
CO3	Understand the Canonical variables. Legendre transformation Lagrange brackets and their properties.	n, Poisson and	
CO4	Learning of rigid body dynamics and small oscillations based modes and frequencies for different examples	normal	
Course C	ontent		
Unit-1-La	agrangian Formulation	Lectures: 20	
Mechanic	cs of a system of particles; constraints of motion, generalize	d coordinates,	
D'Alembe	ert's Principle and Lagrange's velocity - dependent forces and	the dissipation	
function,	Applications of Lagrangian formulation		
Unit-2- H	lamilton's Principles & Equations	Lectures: 16	
Calculus	of variations, Hamilton's principle, Lagrange's equation from	om Hamilton's	
principle,	extension to nonholonomic systems, advantages of variation	tional principle	
formulation	on, symmetry properties of space and time and conserva	tion theorems.	
Legendre Transformation, Hamilton's equations of motion, Cyclic-co-ordinates,			
Hamilton's equations from variational principle, Principle of least action			
Unit-3- C	anonical Transformation:	Lectures: 20	
Canonica	al transformation and its examples, Poisson's brackets, Equat	ions of motion,	
Angular	momentum, Poisson's Bracket relations, infinitesim	ial canonical	
transform	nation, Conservation Theorems. Hamilton-Jacobi equations to	r principal and	
character	characteristic functions, Harmonic oscillator problem, Action-angle variables for		
Systems with one-degree of freedom.			
Unit-4- Kigia Body Dynamics and Small Oscillation Lectures: 16			
Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles			
	r s meorem, immilesimal rotation, Rate of change of a vector,		
transform	nomentum and kinetic energy of a figld body, the mention of rigid b	, principal axis	
	atrical ton Eigon value equation Free vibrations. Norma	L Coordinatos	
a symmetion	$c_{11}c_{21}$ to p_{1} $c_{12}c_{21}$ value equalion, rise vibrations, NOTTIA s of a triatomic molecule	i Coorumates,	
	ש מיומנטווור ווטופרטופ.		

Text/Reference Books

AUTHOR	TITLE	Publisher	Year of publica tion	ISBN
H. Goldstein	Classical Mechanics	Pearson Education	2014	978129 203893 3

G.R. Fowles and G.L. Cassiday	Analytical Mechanics,	Cengage Learnings	2004	978813 150111 5
L.D. Landau and E.M. Lifshit	Mechanics z	Pergamon	1976	075062 8960
N. C. Rana and P. S. Jaog	Classical Mechanics	McGraw-Hill,	1991	978007 460315 4

Course Title: PHY601 (Quantum Mechanics)

L	т	Р	Total Credits
4	0	0	4

	Time(h)
Unit-I-Linear Vector Space	16
Linear vector spaces, Inner product, norm, Schwarz inequality, linear operators, eigenvalue and eigenvector, adjoint of a linear operator, Hermitian or self-adjoint operators and their properties, unitary operators, ortho-normal basis –discrete and continuous. Dirac's bra and ket notation, commutators, Simultaneous eigenvectors	
Unit-II-Matrix Mechanics & Angular Momentum	20
Postulates of quantum mechanics, uncertainty relation. Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg and Schroedinger representations, Exchange operator and identical particles. Density Matrix and Mixed Ensemble. Commutation relations of angular momentum operators. Eigenvalues, eigenvectors. Ladder operators and their matrix representations. Orbital angular momentum operator.	

matrices. General angular momentum & its representation. Clebsch- Gordan coefficients. Wigner - Eckart theorem		
Unit III: Perturbation and Scattering Theory	20	
Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light. Cross-section and scattering amplitude, partial wave analysis, Low energy scattering, Green's functions in scattering theory, Born approximation and its application to Yukawa potential and other simple potentials. Optical theorem, Scattering of identical particles.		
Unit IV: Introduction to Relativistic Quantum Mechanics		
Quantum mechanics of many particle systems. The need for QFT (relativity, many-body and interactions), Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle.		

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
P.M. Mathews K. Venkatesan	A Text book of Quantum Mechanics: 2nd edition	Tata McGraw Hill, New Delhi	2004	978- 0070146174
J.L. Powell an B. Crasemann	dQuantum Mechanics	Narosa, New Delhi	1995	978- 0201059205
J.J. Sakurai	Modern Quantum Mechanics	Addison Wesley	2004	978- 0201539295
E. Merzbacher Quantum Mechanics		John Wiley, Singapore	2004	978- 0471887027
M.P. Khanna Quantum Mechanics Har Ana New De		Har Anand, New Delhi	2006	978- 8124113684
R. Shankar	Principles of Quantum Mechanics: 3rd Ed.	Springer	2008	978- 1475705768

Course Title: Statistical Physics

L T P T	otal Credits
---------	--------------

4	0	0	4
---	---	---	---

Course Outcomes

CO1	Ability to understand fundamentals of thermodynamics and revision of laws of thermodynamics
CO2	Knowledge of statistical ensemble, probability distributions, partition function and classification of ensemble theory on the basis of thermodynamic quantities
CO3	Implementation of quantum concepts on Statistical mechanics.
CO4	Understanding of phase transition concepts/rules and their implementation to describe spin interactions and Ising model
CO5	Learning of Brownian motion and random walk problems.

Course Contents

Unit-1- Review of Thermodynamics	Lectures: 12
Laws of thermodynamics, macroscopic and microscopic states, cor	ntact between
Unit-2- Classical Ensemble Theory	Lectures:
Phase space and Liouville's theorem, the microcanonical ensemble t application to ideal gas of monatomic particles, Boltzmann relation for canonical ensemble and its thermodynamics, partition function, classical canonical ensemble theory, energy fluctuations, equipartition and virial system of quantum harmonic oscillators as canonical ensemble, paramagnetism; The grand canonical ensemble and significance quantities, classical ideal gas in grand canonical ensemble theory.	heory and its entropy, The al ideal gas in I theorems, a statistics of of statistical
Unit-3- Quantum Statistical Mechanics	Lectures: 18
Indistinguishable particles in quantum mechanics. Bosons and Fer Einstein statistics, ideal Bose gas, photons, Bose-Einstein BoseEinstein condensation, discussion of gas of photons (the radiation phonons (the Debye field), Fermi-Dirac statistics, Fermi energy, idea discussion of heat capacity of a free-electron gas at low temperatures.	mions. Bose- condensation. on fields) and al Fermi gas.
Unit-4- Phase Transitions and Fluctuations	Lectures: 18
First- and second-order phase transitions, Interacting spin systems. The Exact solution of Ising model in 1-dimension, mean-field solution dimensions. Diamagnetic, Paramagnetic and ferromagnetic phases. The fluctuations, random walk and Brownian motion, introduction to re processes, diffusion equation	e Ising model. on in higher termodynamic tonequilibrium

Text/Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
C. Kittel	Elementary Statistical Physics	Dover Publications	2004	978- 0486435145
R.K. Pathria	Statistical Mechanics	Elsevier	2021	9351073971
F. Reif,	Statistical Physics	Tata McGraw- Hill	2008	978- 0070048621
K. Huang	Statistical Mechanics	Wiley	2023	9354247736

Course Title: PHY603 (Electronics)

L	Т	Р	Total Credits
4	0	0	4

	Time (h)
Unit I: Circuit Analysis	16
Thevenin and Norton theorems, Mesh and Node analysis. Admittance, impedance, scattering and hybrid matrices for two and three port networks and their cascade & parallel combinations. Laplace Transforms.	
Unit II: Physics of Semiconductor Devices	20
Energy band diagrams, Direct and indirect semiconductors, Metal- semiconductor junctions, Semiconductor junctions p-n junction, Zener diode, Schottky diode, switching diodes, Tunnel diode, LEDs, Solar cell, Photoconductors, Photodiodes, Semiconductor laser, JFET and MOSFET, Liquid crystal displays, UJT, Gunn diode, IMPATT devices, pn devices and applications	
Unit III: Analog Circuits and its Applications	18
Differential amplifiers, common mode rejection ratio, Transfer characteristics, OPAMP configurations, open loop and close loop gain, inverting, non-inverting and differential amplifier, Basic characteristics with detailed internal circuit of IC Opamp, slew rate, Comparators with hysteresis, Window comparator, wave generators, Summing amplifier, Analogue computation, Logarithmic and antilogarithmic amplifiers. Current-to-voltage and Voltage-to-current converter, Voltage regulation circuits, Precision rectifiers, Instrumentation amplifiers, True RMS voltage measurements. 555 timer based circuits.	
Unit IV: Oscillators and Filter	18

Phase shift oscillator, Wien-bridge oscillator, Sample and hold circuits, Phase Locking Loop basics and applications. Lock-in-detector, box-car integrator. Sallen and Key configuration and Multifeedback configuration, Low Pass, High Pass, Band Pass and Band Reject active filters, Delay equalizers.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
W.D. Stanley	Network Analysis with Applications	Pearson	2003	978- 013060246 6
Chua, Desoer and Kuh	Linear and Non-linear Circuits	Tata McGraw	1987	978- 933922068 6
S.M. Sze	Semiconductor Devices - Physics and Technology	John Wiley	2002	978- 812655675 5
J. Millman C. C. Halkias and S. Jit	Electronic Devices and Circuits, 4th Ed.	McGraw-Hill	2015	978- 933921954 3
Boylested and Nashelsky	Electronic Devices and Circuits Theory, 10th ed	Pearson Education,	2009	978- 933254260 0
Ben Streetman, Sanjay Banerjee	Solid State Electronic Devices: 6th Edition	Prentice Hall India	2005	978- 013149726 9

Course Title: PHY604 (Physics Labortary)

L	т	Р	Total Credits
0	0	4	4

Lab/ Practical details:

List of Experiments -with basic instructions

- To study the characteristics of a regulated power supply and voltage multiplier circuits.
- To study the characteristics of a PN junction with varying temperature & the capacitance of the junction.

- To study the characteristics of a LED and determine activation energy.
- To study the frequency response of an operational amplifier & to use operational amplifier for different mathematical operations
- To study the power dissipation in the SSB and DSB side bands of AM wave. To study the demodulation of AM wave.
- To study various aspects of frequency modulation and demodulation.
- To study Hartley and Wien-Bridge oscillators.
- FET/MOSFET characteristics, biasing and its applications as an amplifier..
- UJT characteristics and its application as relaxation oscillator or triggering of triac.
- To study logic gates and flip flop circuits using on a bread-board.
- To design (i) Low pass filter (ii) High pass filter (iii) All-pass filter (iv) Band pass filter (v) Band-reject passive filter.
- Use of timer IC 555 in astable & monostable modes and applications involving relays, LDR.
- To design a rectangular/triangular waveform generator using Comparators and IC8038.
- Hybrid parameters of a transistor and design an amplifier. Determination of k/e ratio.
- To determine Planck's constant using photocell.
- To determine the electric charge of an electron using Millikan drop experiment

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Flint, B L and Worsnop, H T	Advanced practical physics for students	Asia Publishing	1971	978- 0423738902
J. Millman & C. C. Halkias	Electronic Devices and Circuits	McGraw-Hill	4th Ed., 2015	9780137246830

Text / Reference Books:

_Semester-II

Course Title: Computational Physics

L	т	Ρ	Total Credits
2	0	2	4

Course Outcomes

CO1	Review of C++ programming including arrays, pointers and functions
CO2	Learning of various methods to find the roots of equations
CO3	Understanding of Gauss elimination methods to solve linear algebraic equations
CO4	Understanding the differential equation to solve complex physics equations like heat equation and wave equation

Course Content

Unit-1-Review of C++ Programming	Lectures: 9		
Data types, C programming syntax for Input/Output, Control statements: if, if-else and			
nested-if statements. Looping: while, for do while loops, Functions: Call	by values		
and by references, Arrays and structures: one dimensional two-dimension	onal arrays,		
Pointers, Idea of string and structures			
Unit-2-Roots of Equations	Lectures:9		
Real roots of single variable function; iterative approach; qualitative be	ehavior of the		
function; Closed domain methods (bracketing): Bisection; False pos	sition method;		
Open domain methods: Newton-Raphson, Secant method; Mull	er's method;		
Complications; Roots of polynomials; Roots of non-linear equations.			
Unit-3-Linear Algebraic Equations	Lectures: 9		
Introduction, Augmented Matrix, Gaussian Elimination with Backward substitution,			
Pivoting strategies – partial and complete, Gauss Jordan Elimination Method,			
Operation Counts, Tridiagonal Systems of Linear Equations, Inverse of a matrix, LU			
Decomposition			
Unit-4- Differential Equations	Lectures: 9		

Numerical Differentiation, Partial differential equations – elliptic equations; boundary conditions; Finite Difference method; Forward and Backward difference methods, Few examples: Heat equations, Wave equations; Introduction to Finite Element method

Cor	nputational Programming Laboratory
	Objectives: The major objective of this course is intended to be an
	Introduction to a programming Language (C/C++) as well as application for
	general mathematical problems.
	 C++ Programs on Cubic spline interpolation.
	C++ Programs on Root Finding (Bisection, Secant and Newton-
	Denhaan Mathada)
	Raphson Methods)
	C++ Programs to solve First & Second Order differential Equations
	Including Simultaneous Equations (Euler & Runge Kutta)
	Cull Drearance on Numerical Integration (Transzoidal, Simpson and
	Quadrature methods).
	• C++ Programs on Numerical Differentiation
	 C++ Programs on Solution of algebraic equations using Gauss
	elimination with back substitution.
	C++ Programs on Implementing random walk problem in 1-, 2- and 3-
	dimensions
	• To study graphically the motion of falling spherical body under various
	offecto of modium using Fuller method is a viscous dreat human and
	enects of medium using Euler method i.e. viscous drag, buoyancy and
	air arag.
1	

Text/Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Nicholas J. Giordano and Hisao Nakanishi	Computational Physics	Prentice Hall,India	2005	0131469908

R.C. Verma	Computational Physics: An Introduction	New Age International Publishers	1999	9393159169
Richard L. Burden, J. Douglas Faires, Annette M. Burden	Numerical Analysis	Cengage Learning	2016	9788131516 546
Binder, Kurt, Heermann, Dieter	Monte Carlo Simulation in Statistical Physics: An Introduction	Springer	2010	3030107574

Course Title: PHY602 (Classical Electrodynamics)

L	Т	Р	Total Credits
---	---	---	---------------

4 0 0 4	
---------	--

Course Contents/syllabus:	
	Time
Unit I: Electrostatics & Boundary Value Broblems	(II) 10
Onit I. Electrostatics & Boundary Value Problems	10
Gauss's law, Poisson and Laplace equation, Green's theorem, Dirichlet and Neuman boundary conditions, Formal solution of electrostatic boundary value problems with Green function, Electrostatic potential energy and energy density. Method of Images, Point Charge in the Presence of a Grounded Conducting Sphere, Point Charge in the Presence of a Charged, Insulated, Conducting Sphere, Point Charge Near a Conducting Sphere at Fixed Potential, Conducting Sphere in a Uniform Electric Field by Method of Images, Green Function for the Sphere; General Solution for the Potential, Conducting Sphere with Hemispheres at Different Potentials, Separation of Variables; Laplace Equation in Rectangular coordinates, Laplace Equation in Spherical Coordinates, Legendre Equation and Legendre Polynomials, Boundary-Value Problems with Azimuthal Symmetry. Multipole Expansion, Multipole Expansion of the Energy of a Charge Distribution in an External Field, Elementary Treatment of Electrostatics with Ponderable Media, Boundary-Value Problems with	
Dielectrics, Electrostatic energy in dielectric media	10
Dinit II: Magnetostatics	10
Localized Current Distribution, Magnetic Moment, Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction, Singularity in dipole field, Fermi-contact term, Macroscopic Equations, Boundary Conditions on B and H, Methods of Solving Boundary- Value Problems in Magnetostatics, Uniformly Magnetized Sphere, Magnetized Sphere in an External Field; Permanent Magnets, Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field.	
Unit III: Maxwell's Equations & waveguides	18
Maxwell's Displacement Current; Maxwell Equations, Vector and Scalar Potentials, Gauge Transformations, Lorenz Gauge, Coulomb Gauge, Hertz potential. Cylindrical Cavities and Waveguides, Waveguides, Modes in a Rectangular Waveguide, Energy Flow and Attenuation in Waveguides, Coaxial cable, Resonant Cavities, Power Losses in a Cavity; Q of a Cavity , Earth and Ionosphere as a Resonant Cavity: Schumann Resonances, Multimode Propagation in Optical Fibers, Modes in Dielectric Waveguides.	
Unit IV: Electromagnetic Waves	18
Green Functions for the Wave Equation, plane waves in free space and isotropic dielectrics, waves in conducting media, skin depth, Plane waves in a non conducting medium, Reflection and Refraction of Electromagnetic Waves at a Plane Interface Between two Dielectrics, Fresnel's amplitude relations, Reflection and Transmission coefficients, polarization by	

reflection, Brewster's angle, Total internal reflection, Stoke's parameters, Waves in rarefied plasma (ionosphere) and cold magneto-plasma, Frequency Dispersion Characteristics of Dielectrics, Conductors, and Plasmas, Simplified Model of Propagation in the Ionosphere and Magnetosphere. Fields at the Surface of and within a Conductor,

AUTHOR	TITLE	Publisher	Year of publication	ISBN
D.J. Griffiths	Introduction to Electrodynamics, 4th ed.	Prentice Hall India, New Delhi	2012	978- 1108822909
A.Z. Capri and P.V. Panat	Introduction to Electrodynamics	Narosa Publishing House	2010	978- 8173193293
L. D. Landau E. M. Lifshitz L. P. Pitaevskii	Electrodynamics of Continuous Media	Oxford	2005	978- 8181477934
John David Jackson	Classical Electrodynamics,3rd Ed	Wiley	1998	978- 0471309321
S. P. Puri	Classical Electrodynamics	Narosa	2011	978- 8184875843

Course Title: Research Methodology

L	т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Ability to understand the basic characteristics of research and importance of
	various techniques while performing research.
CO2	Understand the types of data and measurement methods.
CO3	To develop numerical methods aided by technology to solve algebraic equations, calculate derivatives and integrals, curve fitting and optimization techniques
CO4	Understanding the role of hypothesis formulation in research.

Course Content

Unit I: Introduction	Lectures: 18	
Research meaning and significance, Characteristics of scientific Research Type of research: pure, applied, analytical, exploratory, descriptive, surveys, Case-study Conceptual or theoretical models Research process Limitations of Social science research Role of computer technology in research		
Unit II: Data: Types and Measurement	Lectures: 18	
Data information and statistics Data types Qualitative and Quantitative Time series Scales of measurement :nominal, ordinal, interval, ratio data: Primary and secondary Census and sample survey-critering sample, choice of sample, probability and non-probability sampling sampling and non-sampling errors.	e; Cross and o Sources of ion of good ng methods,	
Unit III: Numerical Techniques in Defence Research	Lectures: 18	
Introduction to defence related numerical data, solution of non-linear equations, solution of linear systems. Introduction and polynomial approximation, curve fitting, Numerical applications & integrations, numerical optimization. Matrices and types of linear systems, direct elimination methods, conditioning and stability of solutions, Simulation for Computer Graphics. Modelling techniques.		
Unit IV: Hypothesis: Nature and Role in Research	Lectures: 18	
Definition of a Hypothesis Role of Hypothesis Types of Hypothesis Criteria of Good Hypothesis Null and Alternative Hypothesis, parameter and statistic, Type- I and type ii errors. Level of significance. Critical region		

Text/Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Kothari R.C	Research Methodology, Methods and Techniques.	New Age International Publishers	2008	9389802555
O.R.Krishnas wamy, House, 1993	Methodology of Research In Social Sciences	Himalya publishing	1993	9350975696
P.V. Young	Scientific Social Survey and Research,	Prentice Hall of India Ltd,	1984	8120300858
S.S. Sastry.	Introductory Methods of Numerical Analysis	Prentice Hall India Learning Private	2009	9788120345 928

Ltd		Lir	mited Pvt. d		
-----	--	-----	-----------------	--	--

Course Title: Physics Laboratory-II

L	Т	Р	Total Credits
0	0	4	4

Objective: The main objective of this laboratory is to understand the basic concepts of electronics physics through standard set of experiments. Students are expected to perform at least 08 experiments in each semester. In addition, performance of the and the continuous evaluation process allows each and every student to correlate these experiments with the corresponding theory.

- To study the characteristic of J-H curve using ferromagnetic standards.
- To determine the Hall coefficient for a given semi-conductor
- To study temperature-dependence of conductivity of a given semiconductor crystal using four probe method.
- To determine dipole moment of an organic molecule, Acetone
- Tracking of the Ferromagnetic-paramagnetic transition in Nickel through electrical resistivity.
- Temperature dependence of a ceramic capacitor Verification of Curie-Weiss law for the electrical susceptibility of a ferroelectric material.
- To determine the velocity of ultrasonic waves using interferometer as a function of temperature.
- To study the lattice dynamics using LC analog kit.
- To study the characteristics and dead time of a GM Counter
- To study Poisson and Gaussian distributions using a GM Counter.
- To determine the gamma-ray absorption coefficient for different elements.

- \bullet To study the alpha spectrum from natural sources Th and U.
- To calibrate the given gamma-ray spectrometer and determine its energy resolution
- To study polarization by reflection Determination of Brewester's angle.
- To study the Magnetorestriction effect using Michelson interferometer.
- To measure numerical aperture and propagation loss and bending losses for optical fibre as function of bending angle and at various wavelengths

Text/Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
B. L. Flint and H.T. Worsnop	Advanced Practical Physics for students	Asia Publishing House	1971	B097NDTRK R
W.R. Leo 1987.	Techniques for Nuclear and Particle Physics Experiments:	Springer Verlag	1987	978- 3540572800
G. F. Knoll (John Wiley & Sons, Inc. 3rd Ed.)	Radiation Detection and Measurement	John Wiley & Sons, Inc	2000	9780470131 480

Course Title: Quantum Field Theory

L	т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Have the knowledge of the founding principles of relativistic quantum mechanics, Klein-Gordon equation, Dirac equation
CO2	Implementation of Lagrangian and Hamiltonina on scalar fields.
CO3	Understand the basic Feynman rules and its applications
CO4	Significance of decay rates in Field theory
CO5	Understanding the different order of processes and calculation of matrix elements and cross sections.

Course Content

: 15			
spin			
ntral			
Unit-2- Quantum Field Theory Lectures: 15			
er			
b			
e.m. field, Covariant perturbation theory, Wick's Theorem, Smatrix, Feynman			
rules, Feynman diagrams and their applications			
: 15			
Yukawa field theory, calculation of scattering cross sections, decay rates, with			
: 15			

Text/Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
M. E. Peskin & D.V. Schroeder	An Introduction to Quantum Field Theory	Westview Press)	1995	978- 0367320560
L. H. Ryder	Quantum Field Theory	Cambridge University	1996	978- 0521478144

		Press		
A. Das (), 2008	Lectures on Quantum Field Theory	World Scientific	2008	978- 9811220869
A. Lahiri & P. Pal	A first book of Quantum Field Theory	Narosa Publishers	2005	8173196540

Course Title: Advanced Mathematical Methods

L	т	Ρ	Total Credits
4	0	0	4

Course Outcomes

CO1	Acquire knowledge of methods to solve partial differential equations specifically variable separation method with the examples of important partial differential equations in Physics
CO2	Learn the Fourier analysis of periodic functions and their applications in physical problems, understand the Fourier, Laplace transform and their applications
CO3	Learn about the special functions Bessel, Legendre, Hermite and Laguerre, their differential equations and their applications in various physical problems
CO4	Learn about the properties of complex functions such as analyticity, and evaluating integrals using Cauchy's Integral formula and series (Taylor and Laurent) expansion

Course Content

Unit-1-Integral Transformations	Lectures: 22
---------------------------------	--------------

Fourier series, Dirichlet conditions. General properties. Convolution and correlation, Advantages and applications, Gibbs phenomenon. Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation. Applications

Unit-2- Complex Variables	Lectures: 14	
Cauchy-Riemann conditions, analyticity, Cauchy-Goursat theorem, Cauchy's Integral formula, branch points and branch cuts, multivalued functions, Taylor and Laurent expansion, singularities and convergence, calculus of residues, evaluation of definite integrals, Dispersion relation.		
Unit-3- Group Theory	Lectures: 20	
Multiplication table, conjugate elements and classes, Abstract groups: subgroups, classes, cosets, factor groups, normal subgroups, direct product of groups; Examples, Homomorphism & isomorphism. Representations: reducible and irreducible, unitary representations, Schur's lemma and orthogonality theorems, characters of representation, direct product of representations. Introduction to continuous groups: Lie groups, rotation and unitary groups. Representation of SO(3), SU(2), SU(3) and SO(3,1)		
Unit-4- Theory of Probability and Statistics	Lectures: 16	

Introduction to probability theory, Random Variables, Binomial, Poisson and Normal Distributions. Central Limit Theorem, Hypothesis Testing and Data Analysis in Statistics

AUTHOR	TITLE	Publisher	Year of publication	ISBN
G.B. Arfken	Mathematical Methods for Physicists	Elsevier	2012	9381269556
George F. Simmons,	Differential Equations	McGraw Hill.	2007	978- 8173193293
A.S.Fokas & M.J.Ablowitz	Complex Variables	Cambridge Univ. Press	2011	978- 0521534291
K.F Riley, M.P. Hobson and S. J.	Mathematical Methods for Physics and	Cambridge University	2006	978- 0521890670

Text / Reference Books:

Bence	Engineers	Press	

VALUE-ADDED COURSES

Course Title: Individual, Society and Nation (Behavioural Sciences) List of Professional Skill Development Activities (PSDA):

- Project on Understanding Diversity
- Term Paper on Patriotism among Youth

Course Learning Outcomes: On completion of the course:

- To recognize individual differences
- To manage individual differences
- To develop patriotic feelings
- To recognized their self in relation to society & nation

	Time (h)	
Unit-1- Individual differences & Personality		
Personality: Definition& Relevance		
 Importance of nature & nurture in Personality Development 		
 Importance and Recognition of Individual differences in Personality 		
igoplus Accepting and Managing Individual differences Intuition,	Judgment,	
Perception & Sensation (MBTI) BIG5 Factors		
Unit-2- Managing Diversity	4 H	
Defining Diversity		
 Affirmation Action and Managing Diversity 		
 Increasing Diversity in Work Force 		
 Barriers and Challenges in Managing Diversity 		
Unit-3- Socialization, Patriotism and National Pride	4 H	
Nature of Socialization		

Social Interaction	
 Interaction of Socialization Process 	
 Contributions to Society and Nation 	
 Sense of pride and patriotism 	
 Importance of discipline and hard work 	
 Integrity and accountability 	
Unit-4- Human Rights, Values and Ethics	4 H
Meaning and Importance of human rights	
Human rights awareness	
 Values and Ethics- Learning based on project work on Scriptures like- Ramayana, Mahabharata, Gita etc. 	

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Department of English, Univ. of Delhi	The Individual & Society	Pearson Education	2010	978- 81317041 72
Umang Malhotra	Individual, Society, and the World	Universe	2004	978- 05956624 01
Tonja R. Conerly & Kathleen Holmes	Introduction to Sociology 3e	Openstax	2015	97817114 93978
Daksh Tyagi	"A Nation of Idiots"	Every Protest	2019	978- 81942750 15

Course Title: French Grammar (INL-101)

L	Т	Total Credit Units
1	0	1

Course Learning Outcomes: At the end of the course, the student shall be able to:

• Understand information; Express in his own words; Paraphrase; Interpret and translate.

- Apply information in a new way in a practical context
- Analyze and break-down information to create new ideas
- Evaluate and express opinion in a given context

	Teaching Hours
Unit-I : My family and my house	4 H
Descriptors/Topics	
 Talk about your family members 	
 Usage of possessive adjectives 	
 Describe your house/apartment 	
Prepositions of location	
Negation	
Unit-II- Lifestyle	4 H
Descriptors/Topics	
 Talk about your hobbies and pastimes 	
Usage of appropriate articles : definite and contracted	
 Talk about your daily routine 	
 Usage of pronominal verbs 	
Unit-III- In the city	4 H
Descriptors/Topics	
 Filling up a simple form 	
 Ask for personal information 	
 Usage of interrogative adjectives 	
 Give directions about a place 	
 Ordinal numbers 	
 Usage of demonstrative adjectives 	
Unit-IV- Week-end	4 H
Descriptors/Topics	
 Talk about your week-end plans 	
 Usage of disjunctive pronouns 	
 Usage of Near Future tense 	
Talk about weather	

•	Write a simple post card	

Author	Title	Publisher	Year of Publication	ISBN No		
Christine Andant, Catherine Metton, Annabelle Nachon, Fabienne Nugue,	A Propos - A1, Livre de l'élève et Cahier d'exercices.	Langers International Pvt. Ltd.	2010	978- 9380809069		
Collins Dictionaries	Easy Learning French Complete Grammar, Verbs and Vocabulary	Collins	2016	978- 0008141721		
Nikita Desai, Samapita Dey Sarkar	Apprenons La Grammaire Ensemble - French	Langers International Pvt. Ltd.	2017	978- 8193002681		

Course Title: German Grammar (INL-102)

L		Т	Total Credit				
			Units				
	1	0	1				

Course Outcome: At the end of the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context
- Analyze and break-down information to create new ideas
- Evaluate and express opinion in a given context

	Teaching Hours
Module I: Time (Uhrzeit); People and the World: Land, Nationalität und Sprache	4 H
Introduction of time	
Read text related to time and teach the students the time	

expressions	
 Exercises related to Time 	
 Adverbs of time and time related prepositions 	
 Vocabulary: Countries, Nationalities, and their languages 	
Negation: "nicht/ kein"	
● Ja/Nein Fragen.	
 All the colors and color related vocabulary, adjectives, and 	
opposites	
 Exercises and comprehension for the same. 	
Module II: Irregular verbs (unregelmässige Verben)	<u>4 H</u>
Introduction to irregular verbs and their conjugation e.g. fahren,	
essen, lesen etc	
Read a text related to the eating habits of Germans	
Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular	
verbs	
Free time and hobbies	
Food and drinks	
Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen)	4 H
 Introduction to the concept of object (Akkusativ) 	
 Formation of sentences along with the translation and 	
difference between nominative and accusative articles	
 Usage of accusative Definite articles 	
 Usage of accusative Indefinite articles 	
Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship	4 H
 Accusative Personal Pronouns: - Revision of the nominative 	
personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things.	
 Usage of accusative Personal Pronouns 	
 Introduction of accusative possessive pronouns 	

Difference between nominative and accusative possessive pronouns
 usage of accusative possessive pronouns

Text / Reference Books:

Author	Title	Publisher	Year	ISBN No
Dora Schulz, Heinz Griesbach	Deutsche Sprachlehre Fur Auslander	Max Hueber Verlag	1984	978- 319001006 6
Hartmut Aufderstrasse, Jutta Muller, Helmut Muller	Themen Aktuell: Glossar Deutsch	Max Hueber Verlag	2003	978- 319081690 3
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book German Guide	Goyal Publishers	2011	978818307 2120