Course: Masters in Computer Applications (Batch 2023) Program Structure Semester I (First year)

Sr. No	Course Code	Course Title	Course Type	Credit Credit Units					
				L	Т	PS			
1	CAS-610	Programming with Python-I	Core Courses	3	0	4	0	0	5
2	CAS-603	Advanced Database Management System	Core Courses	4	0	2	0	0	5
3	CAS-611	Advanced Data Structures -I	Core Courses	3	0	4	0	0	5
4	CAS-601	Advanced Software Engineering	Core Courses	4	0	2	0	0	5
5	CAS-609	Mathematical Structures in Computer Science	Allied Science Course	4	0	0	0	0	4
6	PSY-601	Self-Development and Interpersonal Skills	Value Added Course (Behavioral Science)	1	0	0	0	0	1
7	FOL- 101/ FOL-102	Introduction to French Culture & Language/ Introduction to German Culture & Language	Value Added Course (Foreign Business Language)	1	0	0	0	0	1
			TOTAL	20	0	12			26
		Tota	l Credits				Mi	n Requi	red: 26
							Sem	ester Cr	redits: 26

Course: Masters in Computer Applications Program Structure Semester II (First year)

Sr. No	Course Code	Course Title	Course Type			Credi	t		Credit Units
				L	Т	PS			
1		Statistics and Data Analysis	Allied Science Course	4	0	0	0	0	4
2		Advanced Web Technologies	Core Courses	3	0	4	0	0	5
3		Research Methodology & IPR	Core Courses	4	0	0	0	0	4
4		Programming with Java	Core Courses	3	0	4	0	0	5
5		Linux Administration	Core Courses	4	0	2	0	0	5
6		Conflict resolution & management	Value Added Courses (Behavioral Science)	1	0	0	0	0	1
7		French Grammar/German Grammar	Value Added Courses (FBL)	1	0	0	0	0	1
			TOTAL	20	0	10			25
		Tota	l Credits				Mi	n Requi	red: 25
							Sem	ester Cr	redits: 25

^{*6-8} Weeks Industrial/Institutional training after 2nd Semester

Course: Masters in Computer Applications Program Structure Semester III (Second year)

Sr. No	Course Code	Course Title	Course Type	Credit Credit Units					
				L	Т	PS			
1		Fundamentals of Artificial Intelligence & Soft Computing	Core Courses	3	0	4	0	0	5
2		Advanced Computer Networks	Core Courses	4	0	0	0	0	4
3		Theory of Computation	Core Courses	4	0	0	0	0	4
4		Domain Elective -	Domain Elective	4	0	0	0	0	4
5		Domain Elective - II	Domain Elective	3	0	2	0	0	4
6		Professional Ethics and Responsibilities – I	Value Added Courses	1	0	0	0	0	1
7		Minor Project	NTCC	0	0	4	0	0	2
8		*Industrial Training	NTCC	0	0	0	0	0	2
			TOTAL	19	0	10			26
		Tota	l Credits					n Requi	red: 26

Course: Masters in Computer Applications Program Structure Semester IV (Second year)

Sr. No	Course Code	Course Title	Course Type			Credi	Credit Cred Uni		
				L	Т	PS			
1		Information Security and Cyber Laws	Core Courses	4	0	0	0	0	4
2		Machine Learning and Data Analytics using Python	Core Courses	3	0	4	0	0	5
3		Domain Elective - III	Domain Elective	4	0	0	0	0	4
4		Domain Elective - IV	Domain Elective	3	0	2	0	0	4
5		Professional Ethics and Responsibilities – II	Value Added Courses	1	0	0	0	0	1
6		Seminar	NTCC	0	0	0	0	0	2
7		Major Project	NTCC	0	0	8	0	0	4
			TOTAL	15	0	14			24
		Tota	l Credits					_	red: 24

Domain Elective: I (Without Lab)

Enterprise Resource Planning

Data Mining and Business Intelligence

Optimization techniques

Domain Elective: II (With Lab)

Mobile Application Development

Big Data Analytics

Software Testing and Quality Assurance

Domain Elective: III (Without Lab)

Data Science

NLP and Speech Recognition

E-Commerce and Digital Marketing

Domain Elective: IV (With Lab)

Cloud Computing

IOT and Blockchain Technologies

Digital Image Processing

Sr. No.	Category	Sem-I	Sem-II	Sem-III	Sem-IV	Total
1.	Allied Sc.	04	04	00	00	08
2.	Basic. Sc.	00	00	00	00	00
3.	Core	20	19	13	09	61
4.	VAC-FBL	01	01	00	00	02
5.	VAC-BS	01	01	00	00	02
6.	VAC-PE	00	00	01	01	02
7.	Domain	00	00	08	08	16
	Elective					
8.	NTCC	00	00	04	06	10
9.	MOOC	00	00	00	00	00
	Total	26	25	26	24	

Course: Masters in Computer Applications Program Structure Semester I (First year)

Sr. No	Course Code	Course Title	Course Type	Credit Credit Units			Credit Units		
				L	Т	PS			
1		Programming with Python -I	Core Courses	3	0	4	0	0	5
2	CAS-603	Advanced Database Management System	Core Courses	4	0	2	0	0	5
3		Advanced Data Structures-I	Core Courses	3	0	4	0	0	5
4	CAS-601	Advanced Software Engineering	Core Courses	4	0	2	0	0	5
5		Mathematical Structures in Computer Science	Allied Science Course	4	0	0	0	0	4
6	PSY-101	Self-Development and Interpersonal Skills	Value Added Course (Behavioral Science)	1	0	0	0	0	1
7	FOL- 101/ FOL-102	Introduction to French Culture & Language/ Introduction to German Culture & Language	Value Added Course (Foreign Business Language)	1	0	0	0	0	1
			TOTAL	20	0	12			26
		Tota	l Credits				Mi	n Requi	red: 26
							Sem	ester Cr	edits: 26

Course Title: Advanced Software Engineering

Contents/syllabus:	L	Т	P/ S	SW/F W	No. of PSD A	TOTAL CREDIT UNITS
	4	0	2	0	0	5

	Total Teaching
	Hours
Unit I: Software Engineering Fundamentals	15 H
Basics of software engineering, software engineering overview, software	
challenges, key quality attributes, software engineering principles, Need of	
Software Engineering, Characteristics of Good Software	
SOFTWARE DEVELOPMENT LIFE CYCLES (SDLCs) – Part I	
Process Models and Solution Life Cycle Phases	
Traditional Life Cycle Models: Waterfall, V, Phased, Evolutionary, Spiral, CBSE	
Alternative Techniques: UP, RAD, JAD, PSP/TSP, Prototyping	
SOFTWARE DEVELOPMENT LIFE CYCLES (SDLCs) – Part II	
Agile Software Engineering Process Models: Extreme Programming,	
Agile Software Development, DevOps, Site Reliability Engineering (SRE)	
Roles and Types of Standards, ISO 12207: Life Cycle Standard, IEEE	
Standards for Software Engineering Processes and Specifications	
Unit II: Software Project Management and Requirements	15 H
Project Management: Management Activities, Project Planning, Project	
Scheduling, Risk Management, Software Cost Estimation: Productivity,	
Estimation Techniques, Algorithmic Cost Modeling, Project Duration and	
Staffing. Quality Management: Quality Assurance and Standards, Quality	
Planning, Quality Control, Software Measurement and Metrics; Process	
Improvement: Process and Product Quality, Process Analysis and	
Modeling, Process Measurement, the SEI Process Maturity Model, and	
Process Classification	
Software Requirements: Functional and Non-Functional Requirements,	
User Requirements, System Requirements, Requirements Document;	
Requirements Engineering Process: Feasibility Studies, Requirements	
Elicitation and Analysis, Requirements Validation, Requirements	
Management.	
Unit III: Architectural and Software Design	15 H
Introduction: System Structuring; Control Models; Modular	
Decomposition; Domain-Specific	
Architectures; Distributed Systems Architectures: Multiprocessor	
Architectures; Client-Server Architectures, Distributed Object	
Architectures; CORBA (Common Object Request Broker Architecture)	
Object Oriented Design: Objects and Object Classes, Object-Oriented	
Design Process, Design Evolution; Real Time Software Design: Systems	
Design, Real-Time Executives, Monitoring and Control Systems, Data	

Acquisition Systems; Design with Reuse: Component-Based Development, Application Families, Design Patterns; User Interface Design: Principles, User Interaction, Information Presentation, User Support, Interface Evaluation.	
Unit IV: Verification, validation and Testing	15 H
Verification and Validation (V & V): Static and Dynamic V & V, V & V	
Goals, V & V vs. Debugging, Software Inspections / Reviews, Clean-Room	
Software Development;	
Software Testing: Defect Testing, Integration Testing, Interface Testing,	
Object-Oriented Testing, Testing	
Workbenches	

Lab/ Practical details, if applicable: (Total: 30 Hours)

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses.

A project may be carried out for various exercises of lab.

- 1. Introduction of Unified Modeling Language and open source software for designing.
- 2. Prepare a feasibility report of selected project.
- 3. Prepare a SRS document for selected Project.
- 4. Make Class diagrams for various set of objects involved in the project.
- 5. Make object diagrams involved in the project.
- 6. Make Use case diagram of the project.
- 7. Make sequence diagrams of the project.
- 8. Make collaboration diagrams of the project.
- 9. Make state chart diagram of the project.
- 10. Make activity diagram of the project.
- 11. Make component diagram of the project.
- 12. Make deployment diagram of the project.
- 13. Prepare the testing plan of the project with test case suite.
- 14. Introduction to various automated tools for testing.

Course Learning Outcomes:

- 1. Understand the basics of software Engineering along with various SDLC models.
- 2. Analyze the software project requirements, risk and cost involved in the project.
- 3. Understand the architecture and design of software.

4. Validate and test the software as per requirements.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
J.F.Peters and W. Pedrycz	Software Engineering: An Engineering Approach	Wiley	2007	978- 0471189640	720
Roger Pressman	Software Engineering: A Practitioner's Approach- 7 th edition	McGraw- Hill	2009	978- 0071267823	928
Ghezzi, Jayazeri, and Mandrioli	Fundamentals of Software Engineering	Prentice- Hall	2002	978- 0130991836	624
Ali Behforooz, and Frederick J.Hudson	Software Engineering Fundamentals	Oxford University Press	2012	978- 0198090502	688
James Rumbaugh and Michael Blaha	Object - Oriented Modeling and Design With UML 2 nd Edition	Pearson Education India	2007	978- 8131711064	504
Rajib Mall	Fundamentals of Software Engineering-4 th edition	Prentice Hall	2014	978- 8120348981	544

Course Title: Programming with Python -I

Course Contents/syllabus:

S W PSDA CREDIT UNITS

3 0 4 0 0 5

P/

SW/F

No. of

TOTAL

		·	Tota teac Hou	hing
Unit I: Introduction to programming and basic	cs of python		12 F	I
History of Python, Need of Python Programming	g, Applications, l	Basics of		
Python Programming, Using the IDLE, Ru	unning Python	Scripts,		

Installation of Jupyter Notebook, Variables, Assignment, Keywords, Input-	
Output, Indentation, comments	
Unit II: Types, Operators and Expressions	18 H
Types - Integers, Strings, Booleans; Operators- Arithmetic Operators,	
Comparison (Relational) Operators, Assignment Operators, Logical	
Operators, Bitwise Operators, Membership Operators, Identity Operators,	
Expressions and order of evaluations, Control Flow- if, if-elif-else, for,	
while, break, continue	
Unit III: Data Structures in Python	15 H
Lists - Creating, Printing, Operations on lists, Slicing, Methods; Tuples:	
Creating, Printing, properties of tuples, Sets, Dictionaries, Sequences and	
their properties.	
Unit IV: Functions and python packages	15 H
Defining Functions, Calling Functions, Passing Arguments, Keyword	
Arguments, Default Arguments, Variable-length arguments, Anonymous	
Functions, Functions(Function Returning Values), Scope of the Variables	
in a Function - Global and Local Variables. Introduction to PIP, Installing	
Packages via PIP, Using Python Packages	

Lab/ Practical details, if applicable: (Total: 60 Hours)

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out hands on experience in programming

- 1. Perform installation of python
- 2. Perform installation of jupyter notebook
- 3. Execute a basic python program with a print message.
- 4. WAP to Check the Python version on command line
- 5. WAP to display the current date and time.
- 6. WAP to input Integer Number as input from User
- 7. WAP to input Float Number as a Input from User
- 8. WAP to get Multiple inputs From a User in One Line
- 9. WAP to format Output String by its positions
- 10. WAP to access Output String Arguments by name
- 11. WAP which accepts the user's first and last name and print them in reverse order with a space between them.
- 12. WAP which accepts the radius of a circle from the user and compute the area.
- 13. WAP to print the following string in a specific format
- 14. WAP to implement arithmetic operators
- 15. WAP to implement relational (comparison) operators

- 16. WAP to implement logical, membership, identity operators
- 17. WAP to implement bitwise operators
- 18. WAP to implement show Operators Precedence
- 19. WAP to print all even and odd numbers using loops
- 20. WAP to implement for and while loops
- 21. WAP to sum all the items in a list.
- 22. WAP to multiply all the items in a list.
- 23. WAP to get the largest number from a list.
- 24. WAP to declare a dictionary
- 25. WAP to access dictionary elements
- 26. WAP to print dictionary elements
- 27. WAP to check whether a given key already exists in a dictionary.
- 28. WAP to sum all the items in a dictionary
- 29. WAP to check a dictionary is empty or not.
- 30. WAP to implement functions
- 31. WAP to implement function: call by value
- 32. WAP to show returning function variables
- 33. WAP to show use of local and global variables
- 34. WAP to implement an application using functions and loops.

Course Learning Outcomes:

- 1. Understand the basics of programming and implement basic python programs, input output functions, types and operators.
- 2. Develop programs using conditional, branching, iteration.
- 3. Learn the functions declaration, implementation, arguments.
- 4. Develop an application using the concepts of list, dictionary, tuples solve engineering and/or scientific problems

AUTHOR	TITLE	Publisher	Year of	ISBN	Pages
			publication		

Paul Barry	Head First Python	O'Reilly Media, Inc.	2016	9781491919538	
Wesley J. Chun	Core Python Programming	Prentice Hall	2006	978-0-13- 226993-3	1120
Kenneth A. Lambert	Fundamentals of Python	Cengage	2019	9789353502898	496
Vamsi Kurama	Python Programming: A Modern Approach	Pearson	2018	978- 9332587526	

Course Title: Advanced Database Management System (CAS-603)

L	Т	P/ S	SW/F W	No. of PSD A	TOTAL CREDIT UNITS
4	0	2	0	0	5

Course Contents/syllabus:

	Total teaching
	Hours
Unit I: RDBMS Fundamentals	15 H
Formal review of relational database, Theoretical concepts, Relational model conformity and Integrity, SQL Queries, Various Normal forms, Decomposition and synthesis approaches, Basics of query processing, external sorting, Processing of joins, materialized vs. pipelined processing, query transformation rules, DB transactions, ACID properties, interleaved executions, schedules, serializability.	
Unit II: Transaction Management and Concurrency Control	15 H
Concurrency control and Transaction management, Recovery Storage organization, Database performance tuning, Distributed relational systems and Data Replication, Security considerations. Transaction Control: Save Point, Commit, Rollback, DCL Commands, Synonym, sequence, Index, Views, Types of locks: Row level locks, Table level locks, Shared lock, Exclusive lock, Deadlock	
Unit III: Emerging Database Management System Technologies	15 H
Object Oriented Database concepts: object identity, structure, and type constructors; encapsulation of operations, methods, and persistence; type and class hierarchies and inheritance; structures and unstructured complex objects and type extensibility; polymorphism, multiple inheritance and selective inheritance, versions and configurations. Temporal database concepts: Time representation, calendars, and time dimensions; incorporating time in relational databases using tuple versioning, incorporating time in object-oriented databases using attribute versioning, time series data.	

Multimedia Databases: The nature of multimedia data and applications; spatial	
database concepts and architecture, introduction to multimedia database	
concepts.	
Deductive databases and Query processing: Prolog/Data log notations, clausal	
form and horn clauses; interpretations of rules.	
Mobile Databases: Mobile computing architecture, characteristics of mobile	
environments, data management issues.	
Geographic Information Systems: GIS applications, data management	
requirements of GIS, specific GIS data operations.	
Unit IV: New Database Applications and Environments	15 H
Data Mining: Overview of data mining technology (associated rules,	
classification, clustering), applications of data mining; Data Warehousing:	
Overview of data warehousing, typical functionality of a data warehouse.	

Lab/ Practical details, if applicable: (Total: 30 Hours)

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses.

- 1. Introduction to SQL environment.
- 2. Exercises on basic SQL queries with DDL and DML commands
- 3. Perform queries for DCL Commands.
- 4. Implement various types of locks.
- 5. Implement authorization, authentication, privileges on database.
- 6. Perform queries to Create synonyms, sequence and index
- 7. Perform queries to Create, alter and update views
- 8. Perform exercise related to various kinds of joins.
- 9. Perform exercise related o synonyms and sequences.
- 10. Perform exercise related to Transaction Control: Save Point, Commit, Rollback
- 11. Introduction to various tools related to emerging databases.
- 12. Introduction to various Data Mining tools

Course Learning Outcomes:

- 1. Understand the various concepts related to relational database management System.
- 2. Analyze the control on various real time transactions along with concurrency.
- 3. Understand the concepts of emerging databases.
- 4. Understand about Data Mining and warehousing concepts.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
R. Ramakrishnan, J. Gehrke	Database Management Systems, 3 rd Edition	McGraw Hill	2014	978- 8131769591	1100
A. Silberschatz, H. Korth, S. Sudarshan	Database system concepts 5 th Edition	McGraw- Hill	2008	978- 0071244763	1024
Ramez Elmasri, Shamkant B. Navathe	Fundamentals of Database Systems, 4 th Edition	Pearson Education	2004	9780321122261	1029
C. J. Date	An Introduction to Database System, 8 th Edition	Pearson Education	2004	978- 0321197849	1040

Advanced Data Structures - I

	L	actice	S S	SW/F W	PSDA	CREDIT UNITS
Course Contents/Syllabus: 3 0 4 0 0						5
						Total Teaching Hours
Unit 1 Linear data structures						15 H
Introduction to Data Structures, Algorithms and Pseudo-codes, Arrays, Stacks and Queues. Operations on Stacks and Queues. Infix to postfix, Applications of stack and queues, Linked lists, Doubly linked list, Circular linked list, operations on linked lists: create, insert, display, delete, traverse.					tions	
Unit 2 Sorting and algorithmic analysis						15 H
Sorting techniques: bubble sort, selection sort, insertion sort, quick sort, merge sort. Space and time Complexities, Best case, worst case and average case complexities, Types of complexity functions: constant, logarithmic, exponential, linear. Asymptotic notations. Tradeoffs between space and time, Complexity analysis of all sorting techniques.					case	
Unit 3 Non-Linear data structures					15 H	
Terminology of trees, types of trees, Binary tree, BST, traversals, Creation, insert, display, delete in trees. Heap tree. MinHeap, max heap, AVL trees, Rotations of AVL tree, B Trees, Introduction to Graphs, Terminologies,						

SW/F No. of

TOTAL

Representation, graph traversal, Breadth first search, Depth first search,	
Minimum Spanning tree (Prim and Kruskal)	
Unit 4 Hashing and Problem solving techniques	15 H
Hash functions, Hash tables, hashing techniques, Concept of collisions,	
Applications, Brute force algorithms, Greedy algorithms, Divide and Conquer	
with examples, other applications of data structures.	

Lab/ Practical details, if applicable:

Objective: The laboratory exercises in this section have been so designed that the students can perform hands-on on various data structures, their implementation and usage for problem solving.

(Total: 60 Hours)

- 1. WAP to implement create, insert, display and traverse in array.
- 2. WAP to reverse elements of an array.
- 3. WAP to implement creation and insertion in Stack.
- 4. WAP to implement traversal, display and deletion in Stack.
- 5. WAP to implement creation and insertion in queue
- 6. WAP to implement traversal, display and deletion in queue
- 7. WAP to implement creation, display, concatenate in singly linked list.
- 8. WAP to implement merge operation in singly linked list.
- 9. WAP to implement a menu driven approach for given operations: Create, Display, Concatenate, merge, union, intersection in single list.
- 10. Write a menu driven program that implements doubly linked list.
- 11. Write a menu driven program that implements Singly circular linked list for the given operations: Create, Display, Count, Insert, Delete, Search.
- 12. WAP to implement bubble sort using n elements.
- 13. WAP to implement insertion sort using n elements.
- 14. WAP to implement selection sort using n elements.
- 15. WAP to implement merge sort using n elements.
- 16. WAP to create a binary tree.
- 17. WAP to traverse a binary tree.
- 18. WAP to create a binary search tree.
- 19. WAP for in-order, preorder and post-order traversal in binary tree.
- 20. WAP to Search the tree for a given node and delete the node
- 21. Write a program that implements Min and Max Heap tree.

- 22. WAP to create a graph.
- 23. Write a program to insert and delete nodes in graph using adjacency matrix.
- 24. Write a program to implement Breadth First search.
- 25. Write a program to implement Depth first search.
- 26. WAP to implement any brute force approach for a given problem.
- 27. WAP to implement greedy approach.
- 28. WAP to implement knapsack problem.
- 29. WAP to implement divide and conquer approach.

Course Learning Outcomes: This course will enable the students to:

- 1. Understanding the concept of complexity, fundamentals of algorithms and problem solving.
- 2. Learn and implement various searching and sorting techniques.
- 3. Understand and apply linear data structures like stack, queue, arrays, lists.
- 4. Understand, analyze and apply nonlinear data structures, trees and graphs for solving real world applications

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
Seymour Lipschutz	Data Structures With C - by Schaum series	Tata McGraw Hill	2017	978- 0070701984	
Robert Kruse, C.L. Tondo, Bruce Leung Pearson.	Data structures and Program Design in C	Pearson India	2006	978- 8177584233	624
Tremblay & Sorenson	An Introduction to Data Structures with Application	McGraw Hill Education	2017	978- 0074624715	872

Course Title: Mathematical Structures in Computer Science

Course Contents/syllabus:	L	Т	P/S	SW/FW	TOTAL CREDIT UNITS
	4	0	0	0	4
					Teaching
					Hours
Unit I: Logic and Proof Techniques					15 H

Sets and Subsets, Operations on Sets, Sequence. Logic: Proposition and Logical Operations, Methods of Proof, Mathematical Induction. Mathematics Logic: Statements and Notation, Connectives, Normal forms, The Theory of Interface for The Statement Calculus, Inference Theory of The Predicate Calculus	
Unit II: Relation and Diagraph function	15 H
Counting: Permutation, Combination. Relational and Digraphs: Product Sets and Partitions, Relations and Digraphs, Paths in Relations and Digraphs Properties of Relations, Equivalence Relations, Computer Representation of Relations and Digraph, Manipulation of Relations, Transitive Closure. Functions: Definition and Introduction, Function for Computer Science, Permutation Functions,	
Unit III: Graph Theory, Boolean and Tree	15 H
	1
Graph Theory: Basic Concept of Graph Theory, Euler Paths and Circuits, Hamiltonian Paths and Circuits. Other Relations and Structure- Partially ordered Sets, Lattices Finite. Boolean: Algebra, Functions of Boolean Algebras, Boolean Function as Boolean Polynomials. Tree- Introduction Undirected Tree, Minimal Spanning Trees.	
Hamiltonian Paths and Circuits. Other Relations and Structure- Partially ordered Sets, Lattices Finite. Boolean: Algebra, Functions of Boolean Algebras, Boolean Function as Boolean Polynomials. Tree- Introduction	15 H

(Total: 60 Hours)

Course Learning Outcomes: On the successful completion of this course the student will be able to

- 1. Construct mathematical arguments using logical connectives and quantifiers.
- 2. Verify the correctness of an argument using symbolic logic and truth tables.
- 3. Construct proofs using direct proof, proof by contradiction, and proof by cases, or mathematical induction.
- 4. Perform operations on discrete structures such as sets, functions, relations, sequences, and groups.
- 5. Understand the basics of graph theory, Lattices, and their applications

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rosen K.	Discrete Mathematics and Its Applications	7 th Edition, Tata McGraw- Hill Education	2011	9780070681880, 0070681880

Tremblay J. P. and Manohar R.	Discrete Mathematical Structures with Applications to Computer Science	Tata McGraw- Hill Education	1997	9780074631133, 9780074631133
Kolman B., Busby R. and Ross S. C.	Discrete Mathematical Structures	6 th Edition, Pearson	2015	9789332549593, 8131755541

COURSE CODE: PSY-601 (Self-Development and Interpersonal Skills)

L	T	P	Total Credits
1	0	0	1

Course Contents/syllabus:

Const Contents/synabus.	TD 4 1
	Total
	Teaching
	Hours
Unit I: Understanding Self and Worth	7 H
Formation of self-concept Dimension of Self Components of self; Self	
Competency; Meaning and Nature of Self Esteem, Importance & need of Self	
Esteem; Steps to enhance Self Esteem; Self Esteem at work	
Unit II: Emotional Intelligence: Brain Power	3 H
Introduction to EI; Difference between IQ, EQ and SQ Relevance of EI at	
workplace; Self-assessment, analysis and action plan	
Unit III: Managing Emotions and Building Interpersonal Competence	4 H
Need for and importance of Emotions; Healthy and Unhealthy expression of	
emotions Anger: Conceptualization and Cycle, Developing emotional and	
interpersonal competence; Self-assessment, analysis and action plan	
Unit IV: Leading Through Positive Attitude	4 H
Understanding Attitudes; Formation of Attitudes; Types of Attitudes; Effects	
of Attitude on: Behavior, Perception, Motivation, Stress, Adjustment, Time	
Management, Effective Performance	
Building Positive Attitude	

Course Learning Outcomes: At the end of this course, the students will be able to:

- 1. To apply cutting edge scientific insights about human behavior, and learn how to change human behavior by altering the "context" in which people act rather than how they think
- 2. Understand state-of-the-art methodological and statistical approaches that are necessary to evaluate the effectiveness of behavioral change.
- 3. Apply behavioral science knowledge and skills to develop insights on individuals and society
- 4. Analyze the nature of human behavior and the impact of factors that influence how humans feel, think and act at an individual, group and societal level
- 5. Evaluate the influence of values and attitudes on human behavior

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Singh A.	Achieving Behavioural Excellence for Success	Wiley Publication	2012	9788126 58027
Towers, Marc	Self Esteem	American Media	1995	9781884 926297
Pedler Mike, Burgoyne John, Boydell Tom	A Manager's Guide to Self-Development	McGraw- Hill	2006	978- 0077114 701
Covey, R. Stephen	Seven habits of Highly Effective People	Simon & Schuster Ltd	2013	978- 1451639 612
Khera Shiv	You Can Win	Macmillan	2005	978- 0333937 402
Gegax Tom	Winning in the Game of Life	Harmony Books	1999	978- 0609603 925
Singh, Dalip	Emotional Intelligence at Work	Publication s	2006	9780761 935322
Goleman, Daniel	Emotional Intelligence	Bantam Books	2007	9780553 095036
Goleman, Daniel	Working with E.I.	Bantam Books	1998	9780553 104622

COURSE CODE: FOL101 (Introduction to French Culture & Language)

L	T	P	Total Credits
1	0	0	1

Course Contents/syllabus:

· · ·	Total Teaching
	hours
Unit-I Introduction to French language	3 h
Brief introduction of French and Francophone countries	
• Presenting oneself	
• Getting information about someone else	
Greeting and taking leave	
Asking/giving personal information	

Unit-II- A rendez-vous ; Visiting a place	6 h
Pronouncing and writing numbers in French	
• Spell and count numbers	
• Telling the time	
• Temporal expressions	
• Communicating in class	
• Fixing an hour, place for a meeting.	
• Describing a person.	
• Identifying a person, object and place	
Describing relation in a family	
• A specific person, object and place	
Unit-III- An interview	4.5 h
Description of objects, people and places	
• Nationalities	
• Speaking about one's professions	
• Expressing Actions using regular –er ending verbs; avoir, être; reflexive verbs – usage, conjuagation	
• Interview of celebrity	
Unit-IV- At the discotheque	4.5 h
Portrait by a journalist	
• Giving a positive or negative reply	
• Asking questions	
Discussion with a person	
Activities in a day	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic French. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Text / Reference Books:

Author	Title	Publisher	Year	ISBN No
Christine Andant, Chaterine Metton, Annabelle Nachon, Fabienne Nugue	A Propos - A1 Livre De L'Eleve, Cahier D' Exercices	Langers International Private Limited	2010	978-9380809069
Manjiri Khandekar and Roopa Luktuke	Jumelage - 1 Methode De Fraincais - French	Langers International Private Limited	2020	978-9380809854
Michael Magne, Marie- Laure Lions- Olivieri	Version Originale 1: Cahier d'exercices	Maison Des Langues	2010	978-8484435617

COURSE CODE: FOL102 (Introduction to German Culture & Language)

L	T	P	Total Credits
1	0	0	1

Course Contents/syllabus:

	Total Teaching hours
Unit-I Introduction to German Language (Einführung)	3 h
Introduction to German as a global language, Self-introduction	
and Greetings, Die Alphabeten, Phonetics: the sound of	
consonants and vowels, Wie buchstabieren Sie Ihren Name?	
Unit-II- Numbers and everyday conversation (die Zahl und Gespräche)	6 h
 Counting in German from 1-100, Simple Calculation and ver 	erb
'kosten' - Wie viel kostet das? Plural Forms, Vocabula	ry:
Wochentage, Monate, Jahreszeiten, Ordinal numbers and t	the
question - Wann haben Sie Geburtstag?	
Unit-III- Regular verbs and nominative case: articles and pronouns	4.5 h
(Regelmässige Verben und Nominativ Kasus: Artikel und Pronomen)	4.5 II
 Introduction to all personal pronouns and conjugation of Regu 	lar
verbs Detailed exercise on regular verbs. Reading a text on regu	lar
verbs. Introduction to definite. Vocabulary: Schulsachen u	ind
Getränke, Nominative case/ Articles (der, die, das) Nominati	ive
Pronouns: - Applicability of pronouns for both persons and thin	gs.

Usage of nominative Personal Pronouns Introduction of	
nominative possessive pronouns usage of nominative possessive	
pronouns	
Unit IV The Family Work life and Ducfassions (Familianmitalisates and	
Unit-IV- The Family, Work-life and Professions (Familienmitglieder und Berufe) & Interrogative sentences (W-Fragen)	4.5 h
The Family, Work-life and Professions (Familienmitglieder und Berufe)	
Vocabulary: Professions and conjugation of the verb 'sein'	
Introduction to simple possessive pronouns with the help of the	
verb 'haben' Usage of possessive pronouns. Interrogative	
sentences (W-Fragen) W-Fragen: who, what, where, when,	
which, how, how many, how much, etc. Exercises on the question	
pronouns	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic German. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyse and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Y ea r	ISBN
Rolf Bruseke	Starten Wir A 1	Langers International Pvt Ltd (Max Hueber Verlag)	20 17	978- 3190160 006
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book	Ernst Klelt Verlog	20 11	978- 8183072 120
Heimy Taylor, Werne r Haas	Station en Deutsch Self Study Course German Guide	Wiley	20 07	978- 0470165 515

Course: Masters in Computer Applications Program Structure Semester II (First year)

Sr. No	Course Code	Course Title	Course Type	Credit Credit Units			Credit Units		
				L	Т	PS			
1		Statistics and Data Analysis	Basic Science Course	4	0	0	0	0	4
2		Advanced Web Technologies	Core Courses	3	0	4	0	0	5
3		Research Methodology & IPR	Core Courses	4	0	0	0	0	4
4		Programming with Java	Core Courses	3	0	4	0	0	5
5		Linux Administration	Core Courses	4	0	2	0	0	5
6		Conflict resolution & management	Value Added Courses (Behavioral Science)	1	0	0	0	0	1
7		French Grammar/German Grammar	Value Added Courses (FBL)	1	0	0	0	0	1
			TOTAL	20	0	10			25
		Total	l Credits					_	red: 25
							Sem	ester Cr	redits: 25

^{*6-8} Weeks Industrial/Institutional training after 2^{nd} Semester

Course Title: Statistics and Data Analysis

Course Contents/syllabus:

L	T	P	TOTAL
			CREDIT UNITS
4	0	0	4

	Teaching Hours
Unit I	15 H
Data collection and graphical presentation, Measures of central tendency,	
Measures of dispersion, Skewness and Kurtosis, Correlation and Regression.	
Definitions of Probability – classical, statistical, and axiomatic. Conditional	
Probability and Independence, Bayes' theorem, and its applications. Random	
variable, Expectation and Moment generating function.	
Unit II	15 H
Discrete distributions: Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative	
Binomial, Hypergeometric, and their properties. Continuous distributions: Uniform,	
Exponential, Gamma, Beta, Weibull, Normal and Lognormal, and their properties.	
Transformation of random variable, Multiple random variable, Joint and Marginal	
distributions, Bivariate transformation, Covariance and correlation.	
Unit III	15 H
Random sample and sampling distribution, Chi square, t and F-distributions,	
Order Statistics, Concepts of sufficiency principle and unbiasedness. Point and	
Interval estimation, Random sample generation.	
Unit IV	15 H
Hypothesis testing, one and two-tail test, Z-test, Chi test, t-test, F-test, analysis	
of variance and regression	

Course Learning Outcomes: On the successful completion of this course the student will be able to understand the

- 1. Basics of descriptive statistics and probability theory
- 2. Use of statistical distributions and their applications in the real-world problems
- 3. concepts of random sampling and sampling distribution
- 4. various statistical tests to analyze the data statistically

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rohatgi V. K. and Saleh, A.K. Md. E.	An Introduction to Probability and Statistics	2 nd Edition, John Wiley and Sons	2009	9788126519262, 9788126519262
Casella G. and Berger R. L.	Statistical Inference	2 nd Edition, Cengage Learning India	2002	9788131503942, 9788131503942

Hogg R. V., Mckean J. and Craig A. T	Introduction to Mathematical Statistics	7 th Edition, Pearson Education India	2013	9789332519114, 9789332519114
Mukhopadhyay P	Mathematical Statistics	Books and Allied	2016	9788187134930

Course Title: Advanced Web Technologies

Company Company and a Wall	L	T	P/S	SW/FW	TOTAL CREDIT
Course Contents/syllabus:					UNITS
	3	0	4	0	5

	3	U	4	U	5
					Teaching
					Hours
Unit I: HTML and XHTML					11 H
Introduction to WWW, HTML, XHTML, Basic Str	uctu	re of	HTMI	L Page,	
Basic Tags, Types of Tags, Lists, Tables, Images, Forms, Frames.					
Unit II: CSS			11 H		
Introduction, Types of Style Sheets –Inline Style Si	heets	, Ext	ernal S	tyle Sheets	
- Style Classes, Properties: Font, Background, Bor	der, t	ext,	nargin	, padding.	
Tables, positioning—line/marker, Outlines.					
Unit III: JavaScript and HTML Documents			12 H		
JAVA SCRIPT – Introduction, variables, operation	s, co	ntrol	structi	ires, loops,	
keywords, Arrays, functions, mathematical functions & string functions.					
keywords, Arrays, functions, mathematical function	ns &	Sum	g runci	.10118.	
Objects, Expressions, Pattern matching, Exception			_		
	Hand	lling	Built-	-in objects,	
Objects, Expressions, Pattern matching, Exception	Hand	lling	Built-	-in objects,	11 H
Objects, Expressions, Pattern matching, Exception Events and Event Handling, Validations, Mouse ev	Hand ents	dling -curs	Built- or, clic	-in objects, eks.	
Objects, Expressions, Pattern matching, Exception Events and Event Handling, Validations, Mouse ev Unit IV: XML	Handents ont ty	dling -curs pe de	Built- or, clic	in objects, cks.	

Lab/ Practical details:

List of Experiments - with basic instructions (Total: 60 Hours)

Objective: The aim of this section of Lab is to teach experiments of web development pertaining to the units being taught in the theory paper specifically related to HTML, CSS and JavaScript and XML.

- 1. Write HTML code to use the tags like caption, title, body etc.
- 2. Write HTML code to divide the screen into multiple frames.
- 3. Write HTML code to link the pages and display the images.
- 4. Write HTML code to create a table
- 5. Write HTML code for form and place some text boxes, command box, selection box etc. on the form.

- 6. Write a Java Script for displaying message, time and date etc using document write method.
- 7. Write a Java Script for displaying different buttons (Ex: ok, cancel) icons (ex: question) and boxes (input, message box).
- 8. Write a Java Script to extract month, year, day from current date.
- 9. Write programs on string. (Ex: Accepting a string, calculating the position of the character in the string, Length)
- 10. Write a program to display all the records in the table.
- 11. Write a program to display a registration form.
- 12. Write a small program using XML.

Course Learning Outcomes:

- 1. The student is expected to get familiar about the concept of various web technologies.
- 2. To understand the concepts of HTML, CSS and JavaScript.
- 3. To learn to use various tags, links and formatting used in HTML.
- 4. To know how to integrate JavaScript with HTML pages and implement various events on web forms.
- 5. To learn markup language XML and its use in web development.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Thomas Powell	Web Design The complete Reference	Tata McGraw Hill	2002	978-0072224429
Thomas Powell	HTML and XHTML The complete Reference	Tata McGraw Hill	2003	9780072229424
Jeffrey C. Jackson	Web Technologies–A Computer Science Perspective	Pearson Education	2006	8131717151
Chris Bates	Web Programming Building Internet Applications	Wiley	2007	0470017759

Course Title: Research Methodology and IPR

		T	P/S	SW	V/FW	TOTAL CREDIT UNITS
Course Contents/syllabus:	4	0	0		0	4
						Teaching Hours
Unit I: Introduction						15 H

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.	
Unit II: Literature and Report Writing	15 H
Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper	
Unit III: Developing and reviewing research proposal	15 H
Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee	
Unit IV: IPR	15 H
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.	

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Stuart Melville and Wayne Goddar	Research methodology: An Introduction	Juta Academic	2014	978- 0702156601
Wayne Goddard and Stuart Melvill	Research Methodology: An Introduction	Juta Academic	2014	978- 0702156601
Ranjit Kumar	Research Methodology: A Step by Step Guide for beginners	Pearson	2005	978- 8131704967

Halbert	Resisting Intellectual Property	Routledge	2006	978- 3131658111
Robert P. Merges, Peter S. Menell, Mark A. Lemley	Intellectual Property in New Technological Age	Clause 8	2016	978- 1945555008

Course Title: Programming with Java

L	T	P/S	SW/FW	TOTAL CREDIT
				UNITS
3	0	4	0	5

Course Contents/syllabus:

Course Contents/syndous.	Teaching
Unit I: Introduction	Hours 9 H
Java Programming Fundamentals: Introduction to Java, Stage for Java, Origin,	<i>/</i> II
Challenges of Java, Java Features, Java Program Development, Object Oriented	
Programming.	
Java Essentials: Elements of Java Program, Java API, Variables and Literals,	
Primitive Data Types, The String class, Variables, Constants, Operators, Scope	
of Variables & Blocks, Types of Comment in Java.	
Unit II: Control Statements & Object Oriented Features	12 H
Control Statements: Decision making statements (if, if-else, nested if, else if	
ladder, switch, conditional operator), Looping statements (while, do-while, for,	
nested loops), Jumping statements (Break and Continue). Classes and Objects:	
Basic concepts of OOPS, Classes and Objects, Modifiers, Passing arguments,	
Constructors, Overloaded Constructors, Overloaded Operators, Static Class	
Members, Garbage Collection.	
Inheritance: Basics of inheritance, Inheriting and Overriding Superclass	
methods, Calling Superclass Constructor, Polymorphism, Abstract Classes,	
Final Class.	
Unit III: Arrays and Strings	12 H
Arrays and Strings: Introduction to array, Processing Array Contents, Passing	
array as argument, Returning array from methods, Array of objects, 2D arrays,	
Array with three or more dimensions. String class, string concatenation,	
Comparing strings, Substring, Difference between String and String Buffer	
class, String Tokenizer class.	
Unit IV: Interfaces and Exceptions	12 H
Interface and Packages: Basics of interface, Multiple Interfaces, Multiple	
Inheritance Using Interface, Multilevel Interface, Packages, Create and Access	
Packages, Static Import and Package Class, Access Specifiers.	ļ
Exception Handling: Introduction, Try and Catch Blocks, Multiple Catch,	
Nested Try, Finally, Throw Statement, Built-In Exceptions.	

List of Experiments:

(Total 60 Hours)

- 1. Write a program to perform following operations on two numbers input by the user:
 - 1) Addition 2) subtraction 3) multiplication 4) division
- 2. Write a Java program to print result of the following operations.
- 1. -15 + 58 * 45
- 2. (35+8) % 6
- 3. 24 + -5*3 / 7
- 4. 15 + 18 / 3 * 2 9 % 3
- 3. Write a Java program to compute area of:
 - 1) Circle2) rectangle 3) triangle 4) square
- 4. Write a program to convert temperature from Fahrenheit to Celsius degree using Iava
- 5. Write a program through Java that reads a number in inches, converts it to meters.
- 6. Write a program to convert minutes into a number of years and days.
- 7. Write a Java program that prints current time in GMT.
- 8. Design a program in Java to solve quadratic equations using if, if else
- 9. Write a Java program to determine greatest number of three numbers.
- 10. Write program that gets a number from the user and generates an integer between 1 and 7 subsequently should display the name of the weekday as per that number.
- 11. Construct a Java program to find the number of days in a month.
- 12. Write a program to sum values of an Single Dimensional array.
- 13. Design & execute a program in Java to sort a numeric array and a string array.
- 14. Calculate the average value of array elements through Java Program.
- 15. Write a Java program to test if an array contains a specific value.
- 16. Find the index of an array element by writing a program in Java.
- 17. Write a Java program to remove a specific element from an array.
- 18. Design a program to copy an array by iterating the array.
- Write a Java program to insert an element (on a specific position) into Multidimensional array.
- 20. Write a program to perform following operations on strings:
 - 1) Compare two strings.

- 2) Count string length.
- 3) Convert upper case to lower case & vice versa.
- 4) Concatenate two strings.
- 5) Print a substring.
- 21. Developed Program & design a method to find the smallest number among three numbers.
- 22. Compute the average of three numbers through a Java Program.
- 23. Write a Program & design a method to count all vowels in a string.
- 24. Write a Java method to count all words in a string.
- 25. Write a method in Java program to count all words in a string.
- 26. Write a Java program to handle following exceptions:
 - 1) Divide by Zero Exception.
 - 2) Array Index Out Of B bound Exception.
- 27. To represent the concept of Multithreading write a Java program.
- 28. To represent the concept of all types of inheritance supported by Java, design a program.
- 29. Write a program to implement Multiple Inheritance using interface.
- 30. Construct a program to design a package in Java.
- 31. To write and read a plain text file, write a Java program.
- 32. Write a Java program to append text to an existing file.
- 33. Design a program in Java to get a list of all file/directory names from the given.
- 34. Develop a Java program to check if a file or directory specified by pathname exists or not.
- 35. Write a Java program to check if a file or directory has read and write permission.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Execute Core Java concepts.
- 2. Illustrate the role of different data type, operators and control statement in java with the help of programs.
- 3. Write programs to handle exceptions
- 4. Implement string operations in Java
- 5. Execute interfaces and packages.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Balagurusamy	Programming with Java: A Primer, 6 th Ed.	ТМН	2019	978- 9353162344
Sagayaraja, Denis, Karthik, Gajalakshmi	Java Programming for Core and Advanced Learners,	The Orient Blackswan	2018	978- 9386235329
Herbert Schildt and Dale Skrien	Java Fundamentals, A Comprehensive Introduction	McGraw Hill	2017	978- 1259006593
H. Schildt	Java, The complete Reference, 11	ТМН	2020	978- 9390491629

Course Title: Linux Administration

	L	T	P/S	SW/FW	TOTAL
Course Contents/syllabus:					CREDIT UNITS
	4	0	2	0	5

	3				
	Teaching				
	Hours				
Unit I: Introduction	15 H				
Introduction: Linux: The Operating System: Linux Distributions, Difference					
Between Linux and Windows, Separation of the GUI and the Kernel,					
Understanding Linux Kernel, Installing Linux in a Server Configuration,					
Booting and Shutting Down Process, Concept of Root, Basic commands,					
working with vi Editor.					
Unit II: File System & Packages	15 H				
Understanding files and File System: Understanding Files and Directories in					
Linux, File Structure and hierarchy, File Permissions, File Management and					
Manipulation, Managing File System.					
Managing Packages & Users: Installing and removing Software in Linux,					
Getting and Unpacking the Package, Configuring the Package, Compiling the					
Package, Installing the Package, Managing Users and Groups.					
Unit III: DNS & Web Server	15 H				
DNS: Installing a DNS Server, Configuring a DNS Server, DNS Records Types,					
Setting Up BIND Database Files, The DNS Toolbox, Configuring DNS Clients.					
Web Server: Understanding the HTTP Protocol, Installing the Apache HTTP					
Server, Starting Up and Shutting Down Apache, Configuring Apache.					
Unit IV: E-mail & Samba Servers	15 H				

E-Mail Server: Understanding SMTP, Installing the Postfix Server, Configuring the Postfix Server, Running the Server, POP and IMAP Basics, Installing the UW-IMAP and POP3 Server

Samba Server: The Mechanics of SMB, Samba Administration, Using SWAT, creating a Share, Mounting Remote Samba Shares, Creating Samba Users, Using Samba to Authenticate Against a Windows Server.

List of Experiments:

(Total 30 Hours)

- 1. Installation of Linux operating system.
 - a. Partitioning drives
 - b. Configuring boot loader (GRUB/LILO)
 - c. Network configuration
 - d. Setting time zones
 - e. Creating password and user accounts
 - f. Installing and removing packages
 - g. Shutting down
- 2. Working with basic commands
- 3. Linux system administration
 - a. Becoming super user
 - b. Temporarily changing user identity with su command
 - c. Using graphical administrative tools
 - d. Administrative commands
 - e. Administrative configuration files
- 4. Configuring NICs with Network Device Configuration Utilities (ip and ifconfig)
- 5. Install and configuring a DNS Server with a domain name of your choice.
- 6. Install and configuring DHCP server and client
- 7. Install and configuring Mail Server
- 8. Install and configuring Apache Web Server for hosting websites
- 9. Securing a simple network with Linux firewall (Netfilter/iptables)
- 10. Securing a simple network with Linux firewall (Netfilter/iptables)

Course Learning Outcomes: After studying this course students will be able to:

1. Discuss the evolution of Open-Source operating systems

- 2. Prepare environment for working on open-source operating system like Linux.
- 3. Perform resource management in Linux.
- 4. Write scripts in Linux
- 5. Execute user level privileges

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Wale Soyinka	Linux Administration: A Beginner's guide	McGraw Hill	2017	978- 1259061189
Evi Nemeth & Garth Synder.	UNIX and Linux system administration Handbook	Pearson	2019	978- 9353062859
Richard Petersen	Linux: The Complete Reference,6 th Ed.	McGraw Hill	2017	978- 0070222946
Emmett Dulaney	Linux All-In-One for Dummies	Wiley	2018	978- 8126577637

Course Title: CONFLICT RESOLUTION & MANAGEMENT

L	T	P/S	SW/FW /PSDA	TOTAL CREDIT UNITS
1	Λ	0	0	1
1	U	U	U	1

Contents/syllabus:

	No. of Session
Unit-1- Conflict Management, Resolution and Management	4 H
Meaning and nature of conflict Types of Conflict	
Styles and Techniques of conflict management	
Conflict management and interpersonal communication	
Conflict Resolution Strategies	
Ways of Managing Conflict (Healthy & Unhealthy)	
Impact of Conflict Resolution & Management	
Unit-2- Behavioral & Interpersonal Communication	4 H
Importance of Interpersonal Communication	

Rapport Building – NLP, Communication mode				
Steps to improve interpersonal communication				
Meaning and Nature of Behavioral Communication				
Relevance of Behavioral Communication				
Unit-3- Relationship Management for Personal and professional Development	3 H			
Importance of relationships				
Maintaining healthy relationships				
Communication Styles				
Types of Interpersonal Relationships				
Unit-4- Stress Management	4 H			
 Understanding of Stress & GAS Model Symptoms of Stress 				
Individual and Organizational consequences with special focus on health Healthy and Unhealthy strategies for stress management				
Social support for stress management and well being				
Stress free, Successful and Happy Life				

List of Professional Skill Development Activities (PSDA):

- Project on Conflict Management
- Term Paper on Need and Techniques of Stress Management among Youth

Course Learning Outcomes: On completion of the course:

- To recognize Conflict and How to Manage them
- To learn Communication and interpersonal behavior
- To understand the significance & Importance of Relationship
- To learn to live stress free and happy life.

AUTHOR	TITLE	Publisher	Year of	ISBN	P
			publicat		ag
			ion		es
Dr. Abha Singh	Achieving Behavioral	Wiley	2013	978812	24
	Excellence for Success	Publicatio		653802	8
		n		7	

Vangelist L. Anita,	Interpersonal Communication	Pearson	2014	978020	46
Mark N. Knapp	and Human Relationships			500608	4
				3	
Christine Simons	Effective Communication for	Cengage	1997	978-	32
and Belinda	Managers: Getting your	Learning		030433	0
Naylor-Stables	message across	EMEA		1208	
	_				
Richard Blonna	Coping with Stress in a	McGraw-	2011	978-	38
	Changing World-5 th Edition	Hill		007352	4
		Education		9714	

Course Title: French Grammar

Course Contents/syllabus:

L	T	P/S	SW/FW	Total Credit Units
1	0	0	0	1

	Teaching Hours
Unit-I: My family and my house	4 H
Descriptors/Topics	
Talk about your family members	
Usage of possessive adjectives	
Describe your house/apartment	
Prepositions of location	
Negation	
Unit-II- Lifestyle	3 H
Descriptors/Topics	
Talk about your hobbies and pastimes	
Usage of appropriate articles: definite and contracted	
Talk about your daily routine	
Usage of pronominal verbs	
Unit-III- In the city	3 H
Descriptors/Topics	
Filling up a simple form	

Ask for personal information	
Usage of interrogative adjectives	
Give directions about a place	
Ordinal numbers	
Usage of demonstrative adjectives	
Unit-IV- Weekend	3 H
	0 11
Descriptors/Topics	011
Descriptors/Topics	
Descriptors/Topics Talk about your week-end plans	
Descriptors/Topics Talk about your week-end plans Usage of disjunctive pronouns	

Course Learning Outcomes: At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyze and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publisher	Year of Publication	ISBN No
Christine Andant, Catherine Metton, Annabelle Nachon, Fabienne Nugue,	A Propos - A1, Livre de l'élève et Cahier d'exercices.	Langers International Pvt. Ltd.	2010	978- 9380809069
Collins Dictionaries	Easy Learning French Complete Grammar, Verbs and Vocabulary	Collins	2016	978- 0008141721
Nikita Desai, Samapita Dey Sarkar	Apprenons La Grammaire Ensemble - French	Langers International Pvt. Ltd.	2017	978- 8193002681

Course Title: German Grammar

Course Contents/syllabus:

]	L	T	P/S	SW/FW	Total Credit Units
	1	0	0	0	1

	Teaching Hours
Module I: Time (Uhrzeit); People and the World: Land, Nationalität und Sprache	4 H
Introduction of time	
Read text related to time and teach the students the time expressions	
Exercises related to Time	
Adverbs of time and time related prepositions	
Vocabulary: Countries, Nationalities, and their languages	
Negation: "nicht/ kein"	
Ja/Nein Fragen.	
All the colors and color related vocabulary, adjectives, and opposites	
Exercises and comprehension for the same.	
Module II: Irregular verbs (unregelmässige Verben)	3 H
Introduction to irregular verbs and their conjugation e.g. fahren, essen, lesen etc	
Read a text related to the eating habits of Germans	
 Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs 	
Free time and hobbies	
Food and drinks	
Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen)	3 H
 Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles 	

Usage of accusative Indefinite articles	3 H	
Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship		
Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things.		
Usage of accusative Personal Pronouns		
Introduction of accusative possessive pronouns		
Difference between nominative and accusative possessive pronouns		
usage of accusative possessive pronouns		

At the end of the course, the student shall be able to:

- 1. Understand information; Express in his own words; Paraphrase; Interpret and translate.
- 2. Apply information in a new way in a practical context
- 3. Analyze and break-down information to create new ideas
- 4. Evaluate and express opinion in a given context

Author	Title	Publishe r	Y ea r	ISBN No	Pa ge s
Dora Schulz, Heinz Griesbach	Deutsche Sprachlehre Fur Auslander	Max Hueber Verlag	19 84	978- 319001 0066	-
Hartmut Aufderstrasse, Jutta Muller, Helmut Muller	Themen Aktuell: Glossar Deutsch	Max Hueber Verlag	20 03	978- 319081 6903	-
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book German Guide	Goyal Publisher s	20 11	978818 307212 0	24 8

Course: Masters in Computer Applications Program Structure Semester III (Second year)

Sr. No	Course Code	Course Title	Course Type						Credit Units
				L	Т	PS			
1		Fundamentals of Artificial Intelligence & Soft Computing	Core Courses	3	0	4	0	0	5
2		Advanced Computer Networks	Core Courses	4	0	0	0	0	4
3		Theory of Computation	Core Courses	4	0	0	0	0	4
4		Domain Elective -I	Domain Elective	4	0	0	0	0	4
		Domain Elective -II	Domain Elective	3	0	2	0	0	4
5		Professional Ethics and Responsibilities – I	Value Added Courses	1	0	0	0	0	1
6		Minor Project	NTCC	0	0	4	0	0	2
7		*Industrial Training	NTCC	0	0	0	0	0	2
			TOTAL	19	0	10			26
		Total Credits						_	red: 26

Domain Elective: I

Enterprise Resource Planning Data Mining and Business Intelligence Optimization techniques

Domain Elective: II

Mobile Application Development Big Data Analytics Software Testing and Quality Assurance

Course Title: Fundamentals of Artificial Intelligence & Soft Computing

Course Contents/syllabus:

L	T	P/S	SW/FW	TOTAL CREDIT
				UNITS
3	0	4	0	5

	Teaching Hours
Unit I: Introduction	9 H
What is intelligence? Foundations of artificial intelligence (AI). History of AI.	
AI problems: Toy Problems, Real World problems- TicTac-Toe, Water Jug,	
Question-Answering, 8-puzzle, 8-Queens problem. Formulating problems,	
Searching for Solutions.	
Unit II: Knowledge Representation and Heuristic Search	12 H
Propositional Logic, Propositional Theorem Proving-Inference and Proofs,	
Proof by Resolution, Horn Clauses and definite Clauses, Forward and Backward	
chaining; First order Logic, Inference in First order Logic.	
Informed (Heuristic) Search Strategies-Hill Climbing, Simulated Annealing,	
Greedy best-first search, A* and optimal search, Memory bounded heuristic	
search.	
Unit III: Soft Computing and Neural Networks	12 H
What is Soft Computing? Difference between Hard and Soft Computing,	
Requirement of Soft computing, Major Areas of Soft Computing, Applications	
of Soft Computing.	
Neural Networks: Introduction, what is Neural Network, Learning rules and	
various activation functions, Supervised Learning Networks, Un- Supervised	
Learning Networks.	
Unit IV: Fuzzy Systems and Genetic Algorithms	12 H
Fuzzy Systems: Fuzzy Set theory, Fuzzy vs. Crisp set, Fuzzy Relation,	
Fuzzification, Minmax Composition, Defuzzification Method, Fuzzy Logic,	
Fuzzy Rule based systems, Predicate logic, Fuzzy Decision Making, Fuzzy	
Control Systems, Fuzzy Classification.	
Genetic Algorithm: History of Genetic Algorithms (GA), Working Principle,	
Various Encoding methods, Fitness function, GA Operators reproduction,	
Crossover, Mutation, Convergence of GA, Bit wise operation in GA, Multi-level	
Optimization. Introduction to Hybrid Systems.	

List of Experiments:

(Total 60 Hours)

Instructions: Develop the assignments in MATLAB/Python.

- 1. Use logic programming in Python to check for prime numbers.
- 2. Use logic programming in Python parse a family tree and infer the relationships between the family members.
- 3. Python script for building a puzzle solver.
- 4. Implementation of uninformed search techniques in Python.
- 5. Implementation of heuristic search techniques in Python.

- 6. Python script for tokenizing text data.
- 7. Extracting the frequency of terms using a Bag of Words model.
- 8. Predict the category to which a given piece of text belongs.
- 9. Python code for visualizing audio speech signal
- 10. Python code for Generating audio signals
- 11. Create a perceptron with appropriate no. of inputs and outputs. Train it using fixed increment learning algorithm until no change in weights is required. Output the final weights.
- 12. Implement AND function using ADALINE with bipolar inputs and outputs.
- 13. Implement AND function using MADALINE with bipolar inputs and outputs.
- 14. Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform maxmin composition on any two fuzzy relations.
- 15. Maximize the function f(x)=x2 using GA, where x ranges form 0-25. Perform 6 iterations has read and write permission.

- 1. Highlight the significance of Artificial Intelligence in knowledge representation
- 2. Examine the useful search techniques; learn their advantages, disadvantages and comparison.
- 3. Explain neural network theory and fuzzy logic theory.
- 4. Apply artificial neural networks and fuzzy logic theory for various problems.
- 5. Determine the use of Genetic algorithm to obtain optimized solutions to problems.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Russel and Norvig	Artificial Intelligence-A Modern Approach, 3 rd ed.	Prentice Hall	2015	978- 9332543515
Elaine Rich, Kevin Knight and SB Nair	Artificial Intelligence	ТМН	2017	978- 0070087705
S.N. Sivanandam, S.N. Deepa	Principles of Soft Computing	Wiley	2018	978- 8126577132

Course Title: Advanced Computer Networks

Course Contents/syllabus:	L	T	P/S	SW/FW	CREDIT UNITS
	4	0	0	0	4

	4	0	0	0	4
					Teaching
TT */ T T / 1 / 1					Hours
Unit I: Introduction		1	1	1' 4'	15 H
Computer Networks: Uses of computer Networks					
networks, Computer Network Structure and Arch	itect	ure,	Refere	nce models	:
OSI model. Physical Leven Concept of Apolog & Digital Signs	1 D.	on der	ideb T	'manamiaaia	
Physical Layer: Concept of Analog & Digital Signa Impairments: Attenuation, Distortion, Noise, Multip					
Time Division, Wavelength Division, Introduction					
Twisted pair, Coaxial cable, Fiber optics, Wi					
microwave, infrared)	10105	5 44	411511115	51011 (1 46 10	,
Unit II: Data Link Layer					15 H
Data Link Layer: Design issues, Framing, Error det	ectio	on an	d corre	ction codes	
parity, checksum, CRC, hamming code, Data lin					
noiseless channels, Sliding Window Protocols: Sto					
ARQ, Selective repeat ARQ, Data link protocols: H			_	•	
Medium Access Sub-Layer: Static and dynamic of					
Access: ALOHA, CSMA-CA/CD protocols, Contro	olled	Acc	ess: Po	Iling, Tokei	1
Passing.					15 TT
Unit III: Network and Transport Layer	1	-1-	1	. 11	15 H
Network Layer: Design issues, IPv4 classful				_	
subnetting, Routing algorithms: distance vector, Co of Congestion Control, Congestion prevention policy	_			-	
bucket algorithms.	168,	Leak	y buck	et and toke	1
Transport Layer: Elements of transport protoco	ıle.	addre	ecino	connection	,
establishment and release, flow control and b			_		
demultiplexing, crash recovery, introduction to TO		_	_	-	
comparison.	, ,	1		,15 01107 01101	
Unit IV: Wireless Networks					15 H
An Overview of Select Wireless and Mobile	Net	work	ing Te	echnologies	:
Principles, WLANs: IEEE 802.11, Cellular Net			_	_	
Mobility Adhoc networks: Features, advantages and applications, Adhoc versus					
Cellular networks, Network architecture, Protocols: MAC protocols, Routing					
protocols, Technologies.				·	
Wireless Communication Systems: Evolution		-			
communication systems, 2G Cellular networks, 1	Evol	ution	for 2	.5G TDMA	Y
Standards, IS-95B for 2.5G CDMA.					

- 1. Define computer networks
- 2. Identify the role played by different layers of network model
- 3. Outline the concept of Internet protocols and network security.
- 4. Highlight the benefits of Adhoc networks
- 5. Explain the protocols used in wireless communication systems.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
A.S. Tanenbaum	S. Tanenbaum Computer Networks		2003	978- 8129701343
Forouzan	Data Communications & Networking	Tata McGraw Hill	2017	978- 1259064753
Larry L. Peterson & Bruce S. Davie	Computer Networks: A Systems Approach	Morgan Kaufmann	2011	978- 0123850591
James F. Kurose & Keith W. Ross	Computer Networking: A Top-Down Approach	Pearson Education	2016	978- 9332585492

Course Title: Theory of Computation

L	T	P/S	SW/FW	TOTAL CREDIT
				UNITS
4	0	0	0	4

Course Contents/syllabus:	4	0	0		0	4
·						Teaching
						Hours
Unit I: Introduction						15 H
Formal Language, Non-Computational Prob	olem	s,]	Diagor	nal		
Argument, Russel's Paradox. Theory of Automa	ata:	Dete	rminis	tic		
Finite Automaton (DFA), Nondeterministic F	inite	e Au	itomat	on		
(NDFA), Equivalence of DFA and NDFA, Mealy at	nd N	l oore	Mode	ls,		
Minimization of Finite Automata						
Unit II: Regular Expressions and Languages						15 H

Regular Sets and Regular Grammars: Regular Languages, Regular	
Grammars, Regular Expressions, Properties of Regular Language,	
Pumping Lemma, Non-Regular Languages, Lexical Analysis.	
Context Free Language: Properties of Context Free Language,	
Chomsky Classification of Languages, Context Free Grammar,	
Simplification of Context Free Grammar, Chomsky Normal Form,	
Greibach Normal Form	
Unit III: Context Free and Context Sensitive Grammar	15 H
Push Down Automata: Ambiguity, Parse Tree Representation of	
Derivation Trees, Equivalence of PDA's and Pushdown Automaton	
(PDA), Non-Deterministic Pushdown Automaton (NPDA). Turing	
Machines (TM): Standard Turing Machine and its Variations;	
Universal Turing Machines, Models of Computation and Church-	
Turing Thesis.	
Unit IV: Turing Machines	15 H
Recursive and Recursively Enumerable Languages; Context Sensitive	
Languages, Unrestricted Grammars, Chomsky Hierarchy of	
Languages, Construction of TM for Simple Problems. Unsolvable	
Problems and Computational Complexity:	
Unsolvable Problem, Halting Problem, Post Correspondence	
Problem, Unsolvable Problems for Context-Free Languages,	
Measuring and Classifying Complexity, Tractable and Intractable	
Problems.	

- 1. Write a formal notation for strings, languages and machines.
- 2. Design finite automata to accept a set of strings of a language.
- 3. Design context free grammars to generate strings of context free language
- 4. Define complexity and computability concepts.
- 5. Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars

AUTHOR	TITLE	Publisher	Year of publication	ISBN
John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman	Introduction to Automata Theory, Languages, and Computation	Pearson	2008	978- 8131720479
Harry R. Lewis and Christos H. Papadimitriou	Elements of the Theory of Computation	Pearson	2015	978- 9332549890

Dexter C. Kozen	Automata and Computability, Undergraduate Texts in Computer Science	Springer	2007	978- 0387949079
Michael Sipser	Introduction to the Theory of Computation	Cengage	2014	978- 8131525296
John Martin	Introduction to Languages and The Theory of Computation	ТМН	2007	978- 0070660489

Course Title: Enterprise Resource Planning

			T			
	L	T	P/S	S	W/FW	TOTAL
Course Contents/syllabus:						CREDIT
·						UNITS
	4	0	0		0	4
						Teaching
						Hours
Unit I: Introduction						15 H
Basic ERP Concepts: Enterprise-An overview,	Bene	efits	& Ris	k,		
Evolution and Structure, Conceptual Model of ERF) .					
ERP & Related Technologies: Business Proce	ss F	Reeng	gineerii	ng		
(BPR), Data Warehousing and Data Mining, OL	ΔP,	Prod	luct Li	fe		
Cycle Management, Supply Chain management, C	RM.					
Unit II: ERP Functional Module						15 H
Introduction, Finance, Manufacturing, Human	Res	sourc	e, Pla	nt		
maintenance, Material Management, Integration						
Chain and Customer Relationship Application						
Unit III: ERP Implementation and Strategic Gr	id					15 H
Implementation Challenges / Strategies / Methodol	ogies	s, ER	P Proje	ect		
Teams, Vendors and Consultants, Dealing with em	ploy	ee re	sistanc	e,		
Training and Education, data migration, Project	Mar	nagen	nent ai	nd		
monitoring						
Unit IV: ERP Maintenance and Emerging Trend	ds					15 H
Maintenance of ERP- Organizational and Industria	al im	pact;	Succe	SS		
and Failure factors of ERP Implementation. Calculation of ROI of						
ERP implementation, Hidden costs, ERP success inhibitors and						
accelerators.						
Emerging Trends on ERP: Technologies in ERP Systems and						
Extended ERP, ERP Market Place and Dynamics, Future Directives						
in ERP; ERP E Commerce & E – Governance: Concept, frame work,						
area of application like public sector, service indus						
Case Studies: Development and Analysis of ERP In	nple	ment	ations.			

Course Learning Outcomes: After studying this course students will be able to:

- 1. Define ERP & Related Technologies
- 2. Compare different types of ERP functional modules.
- 3. Explain Implementation Strategies of ERP
- 4. Discuss the latest trends and domains of ERP.
- 5. Analyze various case studies related to ERP implementation

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Alexis Leon	Enterprise Resource Planning	Mc Graw Hill	2019	978- 9353167820
Vinod Kumar Garg and Venkita Krishnan N K	Enterprise Resource Planning Concepts and Practice	Prentice Hall	2003	978- 8120322547
V.K. Garg & N.K. Venkita Krishnan	ERP Ware: ERP Implementation Framework	Prentice Hall	2004	978- 8120315525
S Sadagopan	ERP A Managerial Prospective	Mc Graw Hill	1999	978- 0074631089
Rahul V. Altekar	Enterprise-wide Resource Planning	РНІ	2006	978- 8120326330

Course Title: Data Mining and Business Intelligence

Course Contents/syllabus:	L	Т	P/S	S	W/FW	TOTAL CREDIT UNITS
	4	0	0		0	4
						Teaching Hours
Unit I: Introduction						15 H
Reporting and Analyzing data, Raw data to valu	ıable	info	rmatio	n-		
Lifecycle of Data, The building Blocks: Defining	g Fe	ature	s – Da	ıta		
Warehouses (DW) and Data Marts - Overview of	the o	comp	onents	_		
Metadata, Need, Basic elements, trends. Business	Inte	ellige	nce (B	SI)		
Definitions and Concepts, BI Process and Technology, BI Roles and						
Responsibilities.	-					
Unit II: Architecture and Data Mining						15 H

THE A 11 COL LOW DI LOW	1
The Architecture of BI and DW: BI and DW architectures and its	
types, Relation between BI and DW - OLAP and OLTP definition and	
its differences, Dimensional analysis: Drill-down and roll-up – slice	
and dice or rotation, schemas: Stars, snowflakes and fact	
constellations.	
Motivation for Data Mining, Data Mining Definition, and	
Functionalities, Classification of DM Systems - DM task and its	
applications, Integration of a Data, KDD Process, Steps of pre-	
processing data - Data cleaning: Missing Values, Noisy Data - Data,	
Integration, and transformation - Data Reduction: Data cube	
aggregation, Dimensionality reduction - Data Compression.	
Unit III: Association, Classification and Prediction	15 H
Introduction, Data Generalization and summarization-based	
characterization, Association Rule Mining; Market basket analysis -	
basic concepts - Finding frequent item sets: Apriori algorithm -	
generating rules – Improved Apriori algorithm	
Introduction, Issues regarding Classification and prediction:	
Classification methods: Decision tree, Bayesian Classification, Rule	
based, CART, Neural Network Prediction methods: Linear and	
nonlinear regression, Logistic Regression	
Unit IV: Data Mining for BI and Advanced Topics	15 H
Data mining for business Applications like Balanced Scorecard, Fraud	
Detection, Clickstream Mining, Market Segmentation, retail industry,	
telecommunications industry, banking & finance and CRM etc.,	
Clustering, Spatial mining, web mining, text mining, Data Analytics	
Life Cycle: Big data Business Analytics, State of the practice in	
analytics role of data scientists, Hadoop architecture.	

- 1. Highlight the need of Data Warehousing & Mining
- 2. Differentiate between the Transactional and Analytical data models.
- 3. Identify the real-life applications where data mining can be applied.
- 4. Apply different data mining algorithms on wide range of data sets.
- 5. Comment on latest tools for data mining and big data analysis

AUTHOR	TITLE	Publisher	Year of publication	ISBN
J. Han, M. Kamber	Data Mining Concepts and Techniques	Elsevier	2007	978- 9380931913
Arun K. Pujari	Data Mining Techniques	The Orient Blackswan	2016	978- 9386235053
M. Kantardzic	Data mining: Concepts, models, methods and algorithms	Wiley	2019	978- 1119516040

Paulraj Ponnian	Data Warehousing Fundamentals	Wiley	2012	978- 8126537297
G. Shmueli, N.R. Patel, P.C. Bruce	Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMine	Wiley	2010	978- 0470526828

Course Title: Optimization Techniques

	L	T	P/S	S	W/FW	TOTAL
						CREDIT
Course Contents/syllabus:						UNITS
	4	0	0		0	4
						Teaching
						Hours
Unit I: Introduction						15 H
Introduction to linear and non-linear programmi	ng fo	ormu	lation	of		
different models.						
Unit II: Linear and Integer Programming						15 H
Geometry of linear programming, Graphical	me	thod,	Line	ar		
programming (LP) in standard form, Solution of	of LI	P by	simpl	ex		
method, Exceptional cases in LP, Duality theo	ry, l	Dual	simpl	ex		
method, Sensitivity analysis.						
Integer Programming: Branch and bound technique	.					
Unit III: Transportation Problem and Project M	I ana	geme	ent			15 H
Initial basic feasible solutions of balanced	and	un	balanc	ed		
transportation/assignment problems, Optimal soluti	ons.	[CO3	3] Proje	ect		
Management: Construction of networks, Netwo	ork (comp	utation	ıs,		
Floats (free floats and total floats), Critical path method (CPM),						
Crashing.						
Unit IV: Game Theory						15 H
Two-person zero-sum game, Game with mixed str	ategi	ies, C	Graphic	al		
method and solution by linear programming.						

Course Learning Outcomes: After studying this course students will be able to:

- Define the scope of operation research
 Solve linear programming problems
- 3. Prepare feasible solutions for transportation and assignment problems
- 4. Outline the Project Management problems using CPM
- 5. Find solution to various optimization problems

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Chandra, S., Jayadeva, Mehra, A	Numerical Optimization with Applications	Narosa	2009	978- 8173198540
Taha H.A.	Operations Research-An Introduction	Pearson	2019	978- 9352865277
Pant J. C.	Introduction to optimization: Operations Research	Jain Brothers	2008	978- 8183600767
Bazaarra Mokhtar S., Jarvis John J. and Shirali Hanif D.	Linear Programming and Network flows	Wiley	2010	978- 0470462720
Swarup, K., Gupta, P. K., Mammohan	Operations Research	Sulthan chand	2010	978- 8180547713

Course Title: Mobile Application Development

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4

	U	4
		Teaching
		Hours
Unit I: Introduction		11 H
Mobile Applications – Characteristics and Benefits – Frameworks and		
Tools, Types, Application Model. Profiles of Mobile devices.		
Building Blocks of Mobile Applications: User Interface Designing,		
Layout, User Interface elements, Functionality based user interface,		
Naïve Data Handling, Sprucing up Mobile applications.		
Testing Mobile Applications: Debugging Applications, Testing		
Strategies, Test Automation of Applications.		
Unit II: Mobile Operating System		11 H
Unit II: Mobile Operating System Introduction to Mobile Operating Systems and why they are needed,		11 H
		11 H
Introduction to Mobile Operating Systems and why they are needed,		11 H
Introduction to Mobile Operating Systems and why they are needed, Open Platforms, Mobile OS Features, Symbian, BlackBerry, Android,		11 H
Introduction to Mobile Operating Systems and why they are needed, Open Platforms, Mobile OS Features, Symbian, BlackBerry, Android, iOS, Windows, Tizen, Ubuntu, etc.		11 H
Introduction to Mobile Operating Systems and why they are needed, Open Platforms, Mobile OS Features, Symbian, BlackBerry, Android, iOS, Windows, Tizen, Ubuntu, etc. Android programming: Android toolkit, Components of an Android application, Android Software Development using Eclipse – Concepts, Terminology, Views and Perspectives, memory		11 H
Introduction to Mobile Operating Systems and why they are needed, Open Platforms, Mobile OS Features, Symbian, BlackBerry, Android, iOS, Windows, Tizen, Ubuntu, etc. Android programming: Android toolkit, Components of an Android application, Android Software Development using Eclipse —		11 H
Introduction to Mobile Operating Systems and why they are needed, Open Platforms, Mobile OS Features, Symbian, BlackBerry, Android, iOS, Windows, Tizen, Ubuntu, etc. Android programming: Android toolkit, Components of an Android application, Android Software Development using Eclipse – Concepts, Terminology, Views and Perspectives, memory		11 H

Android programming: Android toolkit, Components of an Android application, Android Software Development using Eclipse – Concepts, Terminology, Views and Perspectives, memory management, communication protocols, application development methods, deployment.	
Unit IV: IOS	12 H
Development environment, iOS Layers, Architecture, User Interface tool kit interfaces, Event handling, Graphics services, Layer Animation, Basic iPhone Styling, Advanced iPhone Styling.	

List of Experiments

(Total 30 Hours)

- 1. Using emulator to deploy and run mobile apps
- 2. Create an Android application that shows Hello + name of the user and run it on an emulator.
- 3. Create an application that takes the name from a text box and shows hello message along with the name entered in text box, when the user clicks the OK button.
- 4. Develop an ANDRIOD application that uses GUI components, Font and Colors.
- 5. Write an application that draws basic graphical primitives on the screen.
- 6. Develop an application that uses Layout Managers and event listeners.
- 7. Create and Login application as above. On successful login, open browser with any URL.
- 8. Testing mobile app unit testing, black box testing and test automation.
- 9. Create an iOS application that can play audio and video files.
- 10. Write an iOS application that creates alarm clock.
- 11. Devise an iOS application that draws basic graphical primitives (rectangle, circle) on the screen.
- 12. Build an iOS mobile application that create, save, update and delete data in a database.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Define framework of mobile application development
- 2. Comment upon the building blocks of mobile computing
- 3. Test the mobile applications
- 4. Compare development environment of different operating systems for mobile application development.
- 5. Write programs for basic mobile applications

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Zigurd Mednieks, L. Dornin, G. Blake Meike, M. Nakamura	Programming Android	O'Reilly	2011	978- 1449389697
A. Allan	Learning iPhone Programming	O'Reilly	2010	978- 0596806439
Neal Goldstein, Tony Bove	iPhone Application Development All-In-One For Dummies	John Wiley & Sons	2010	978- 0470542934
Carmen Delessio, Lauren Darcey, Shane Conder	Android Application Development In 24 Hours, Sams Teach Yourself	Sams	2015	978- 0672337390

Course Title: Big Data Analytics

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4

3 0 2	U	4
		Teaching
		Hours
Unit I: Introduction		11 H
Evolution of Big data – Best Practices for Big data Analytics, Big data		
characteristics, Validating – The Promotion of the Value of Big Data,		
Big Data Use Cases, Characteristics of Big Data Applications,		
Perception and Quantification of Value, Understanding Big Data		
Storage, A General Overview of High-performance Architecture –		
HDFS, Map Reduce and YARN – Map Reduce Programming Model.		
Unit II: Cloud Virtualization		12 H
Advanced Analytical Theory and Methods: Overview of Clustering –		
K-means, Use Cases, Overview of the Method, Determining the		
Number of Clusters, Diagnostics, Reasons to Choose and Cautions,		
Classification: Decision Trees, Overview of a Decision Tree, The		
General Algorithm – Decision Tree Algorithms, Evaluating a		
Decision Tree, Decision Trees in R, Naïve Bayes, Bayes 'Theorem,		
Naïve Bayes Classifier.		
Association Rules - Overview, Apriori Algorithm, Evaluation of		
Candidate Rules, Applications of Association Rules, Finding		
Association & finding similarity, Recommendation System:		
Collaborative Recommendation- Content Based Recommendation,		
Knowledge Based Recommendation, Hybrid Recommendation		
Approaches.		

Unit III: Cloud Service and Deployment Models		11 H
Introduction to Streams Concepts, Stream Data Model and Architecture, Stream Computing, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Estimating moments, Counting oneness in a Window, Decaying Window, Real time Analytics Platform (RTAP) applications, Real Time Sentiment		
Analysis, Stock Market Predictions. Using Graph Analytics for Big		
Data: Graph Analytics.		
Unit IV: Cloud Security		11 H
Hadoop Implementation and Deployment: Introducing Hadoop, Hadoop cluster components, Hadoop Architecture, Hadoop Ecosystem, Evaluation criteria for distributed Map Reduce runtimes,		
Enterprise-grade Hadoop Deployment, Hadoop Implementation.		

List of Experiments

(Total 30 Hours)

- 1. Design and Create Cube by identifying measures and dimensions for Star Schema, Snowflake
- 2. Design and Create Cube by identifying measures and dimensions for Design storage for cube using storage
- 3. Process Cube and Browse Cube Data by replacing a dimension in the grid, filtering and drilldown using cube browser
- 4. Process cube to browse dimension data and view dimension members, member properties, member property values
- 5. Create and use Excel Pivot Table Report based on data cube
- 6. Design and Create data mining models using Analysis Service of SQL server 2005
- 7. Design and Build targeted mailing data mining model using analysis service of SQL server and compare their predictive capabilities using the Mining Accuracy Chart View and Create predictions using Prediction Query Builder.
- 8. Perform various steps of Preprocessing on the given relational database / warehouse
- 9. To implement Data Mining Extensions (DMX) language and MDX query language
- 10. Perform various steps of Preprocessing using WEKA software
- 11. Creating Data Mining Structure & Predictive Models (Neural Networks and Decision Tree) using the Excel Add-In for SQL Server.
- 12. To setup Hadoop
- 13. To run sample program using Hadoop

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the fundamental processes, concepts and techniques of data mining and develop an appreciation for the inherent complexity of the data- mining task.
- 2. To develop skills for analyzing Knowledge based Systems
- 3. Implement various high-performance Architectures.
- 4. Analyze Data in various scenarios.
- 5. Manage Job Execution in Hadoop Environment

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
J. Han, M. Kamber	Data Mining Concepts and Techniques	Elsevier	2007	978- 9380931913
M. Kantardzic	Data mining: Concepts, models, methods and algorithms	John Wiley & Sons	2019	978- 1119516040
Robert D. Schneider	Hadoop for Dummies	John Wiley & Sons	2013	978- 1118250518
M. Dunham	Data Mining: Introductory and Advanced Topics	Pearson	2006	978- 8177587852
Paulraj Ponnian	Data Warehousing Fundamentals	John Wiley & Sons	2012	978- 8126537297
Pieter Adriaans, Dolf Zantinge	Data Mining	Addison- Wesley	1996	978- 0201403800

Course Title: Software Testing and Quality Assurance

	\mathbf{L}	T	P/S	S	W/FW		TOTAL
Course Contents/syllabus:						(CREDIT
Course Contents/synabus.							UNITS
	3	0	2		0		4
							Teaching
							Hours
Unit I: Introduction						11 H	
Testing, Verification and Validation, Test Strategies for Conventional							
and Object-Oriented Software, Unit Testing, In	tegra	ation	Testin	ıg,			
Validation Testing, Alpha and Beta Testing, System Testing,							
Recovery Testing, Security Testing, Stress Testing, Performance							
Testing, Metrics for Source Code, Metrics for Testing, Debugging			ng				
Process, Debugging Strategies.		-					
Unit II: Testing Techniques							11 H

Software Testing Fundamentals, Black Box and White Box Testing,	
Basis Path Testing, Flow Graph Notation, Independent Program Paths,	
Graph Matrices, Control Structure Testing, Condition Testing, Data	
Flow Testing, Loop Testing, Graph Based Testing Methods,	
Equivalence Partitioning	
Unit III: Object oriented and Specialized System testing	11 H
Applicability of Conventional Test Case Design Methods, Issues in	
Object Oriented Testing, Fault-Based Testing, Scenario-Based	
Testing, Random Testing and Partition Testing for Classes, Inter Class	
Test Case Design.	
Testing Process and Specialized Systems Testing: Test Plan	
Development, Requirement Phase, Design Phase and Program Phase	
Testing, Testing Client/Server Systems, Testing Web based Systems,	
Testing Off the-Shelf Software, Testing in Multiplatform	
Environment, Testing for Real Time Systems, Testing Security	
Unit IV: Quality Assurance and risk Management	12 H
Quality Concepts, Quality Control, Software Quality Attributes,	
Quality Assurance, SQA Activities, Software Reviews, Formal	
Technical Reviews, Review Guidelines, Software Reliability,	
Software Safety, Quality Assurance Standards, ISO 9000, ISO	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM,	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM, Six Sigma, SPICE, Software Quality Assurance Metrics.	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM, Six Sigma, SPICE, Software Quality Assurance Metrics. Risk Management and Change Management: Software Risks, Risk	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM, Six Sigma, SPICE, Software Quality Assurance Metrics. Risk Management and Change Management: Software Risks, Risk Identification, Risk Projection, Risk Refinement, The RMMM Plan,	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM, Six Sigma, SPICE, Software Quality Assurance Metrics. Risk Management and Change Management: Software Risks, Risk Identification, Risk Projection, Risk Refinement, The RMMM Plan, Software Configuration Management, Baselines, Software	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM, Six Sigma, SPICE, Software Quality Assurance Metrics. Risk Management and Change Management: Software Risks, Risk Identification, Risk Projection, Risk Refinement, The RMMM Plan, Software Configuration Management, Baselines, Software Configuration Items, SCM Process: Version Control, Change Control,	
9001:2000, ISO 9126 Quality Factors, CMM, CMMI, PCMM, TQM, Six Sigma, SPICE, Software Quality Assurance Metrics. Risk Management and Change Management: Software Risks, Risk Identification, Risk Projection, Risk Refinement, The RMMM Plan, Software Configuration Management, Baselines, Software	

List of Experiments

(Total 30 Hours)

- 1. Introduction to Test Cases, how to create a simple test case and record it in the excel file.
- 2. Developing Login functionality and testing them manually and storing the data in the sheet
- 3. Testing the registration functionality
- 4. Testing flight reservation system and recording test cases
- 5. Testing the date field scenario programmatically and recording test cases.
- 6. Taking scenario of product description functionality in ecommerce website.
- 7. Taking a scenario of payment functionality and order history in ecommerce website.
- 8. Practicing the data flow testing taking some another logic and implying path testing
- 9. Taking up path testing
- 10. Developing a logical code to test boundary value exemptions

- 11. Create an image upload functionality and make their test cases
- 12. Teams will make HTML CSS design templates in hours and perform load and performance testing
- 13. Developing applications to automate basis path testing.
- 14. Exposure to automated testing tools such as Rational test manager, Selennium, Loadrunner or any other similar tools.

- 1. Explain various approaches of software testing and quality assurance for software development.
- 2. Create test strategies, design test cases, prioritize and execute them.
- 3. Identify various risks involved with software projects and build risk management
- 4. Plan software management and configuration activities.
- 5. Discuss the risk management involved in software development.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Daniel Galin	Software Quality Assurance – From Theory to Implementation	Pearson	2008	978- 8131723951
Boris Beizer	Software Testing Techniques	Wiley	2002	978- 8177222609
Roger S. Pressman	Software Engineering	Tata McGraw Hill	2017	978- 0070701137
William E. Perry	Effective Methods for Software Testing	Wiley	2006	978- 8126508938
Naresh Chauhan	Software Testing – Principles and Practices	Oxford University Press	2016	978- 0199465873

Course Title: Professional Ethics and Responsibilities - I

Course Contents/syllabus:		T	P/S	S	W/FW	TOT CRE UNI	DIT
	1	0	0		0	1	
						Teac	ching
							ırs
Unit I: Introduction to Ethics						04 H	I
Origin of Ethics, Ethics: definition, moral philosophy, nature of moral							
judgments and reactions.							

Unit II: Ethical Issues at workplace	04 H
Ethical Dilemma's, Challenges in ethical decision making, Redressal	
of grievances	
Unit III: Code of Ethics	05 H
Principle of Ethics, Compliance based and values-based code of	
ethics, Professional obligation, Role of regulatory authority, Respect	
for Privacy, Confidentiality, Inform Consent and debriefing	
Unit IV: Different theories of ethics	05 H
Theories of Ethics (Utilitarian Theory, Right Theory & Casuist	
Theory), Benefit of Ethics. Freedom in ethical discourse	

Professional Skills Development Activities:

- Students will carry out an industrial survey /interview /focus group discussion to identify and understand the translation of professional values and ethics in daily work practices. Students will compile a minor project report based on it.
- The students will develop a case study based on any major violation of professional ethics by studying newspaper articles, policy documents, discussions paper in parliament media interviews and documentaries etc (Give presentation in team of 3).
- The students will carry out a home assignment by writing a review of literature on ethical issues and practices in his/ her area of study.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Relate code of ethics with appropriate profession
- 2. Comprehend the concept of professional ethics
- 3. Analyze various ethical issues at workplace
- 4. Interpret theories of ethics and their implications

AUTHOR	TITLE	Publisher	Year of publication	ISBN
R Boatright John, D Smith Jeffrey, Prasan Patra Bibhu	Ethics and the Conduct of Business	Pearson	2017	978- 9352862306
Edmund G Seebauer and Robert L Barry	Fundamentals of Ethics for Scientists and Engineers	Oxford University	2008	978- 0195698480
Richard Rowson	Working Ethics: How to Be Fair in a Culturally Complex World	Jessica Kingsley	2006	978- 1853027505
Laura P. Hartman and Joe Desjardins	Business Ethics: Decision Making for Personal Integrity and Social Responsibility	Mc Graw Hill	2013	978- 1259098277

, i i i i i i i i i i i i i i i i i i i	Michael Davis, Andrew Stark	Conflict of Interest in the Professions	OUP, USA	2001	978- 0195128635
---	--------------------------------	---	----------	------	--------------------

Course: Masters in Computer Applications Program Structure Semester IV (Second year)

Sr. No	Course Code	Course Title	Course Type						Credit Units
				L	Т	PS			
1		Information Security and Cyber Laws	Core Courses	4	0	0	0	0	4
2		Machine Learning and Data Analytics using Python	Core Courses	3	0	4	0	0	5
3		Domain Elective -III	Domain Elective	4	0	0	0	0	4
4		Domain Elective -IV	Domain Elective	3	0	2	0	0	4
5		Professional Ethics and Responsibilities – II	Value Added Courses	1	0	0	0	0	1
6		Seminar	NTCC	0	0	0	0	0	2
7		Major Project	NTCC	0	0	8	0	0	4
			TOTAL	15	0	14			24
		Total Credits					Mi	n Requi	red: 24
							Sem	ester Cr	edits: 24

Domain Elective: III

Data Science NLP and Speech Recognition E-Commerce and Digital Marketing

Domain Elective: IVCloud Computing
IOT and Blockchain Technologies
Digital Image Processing

Course Title: Information Security and Cyber Laws

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	4	0	0	0	4

	4	0	0		0	4
		-				Teaching
						Hours
Unit I: Introduction						15 H
Introduction to Information System, classification and		-		of		
		cepts				
(Confidentiality, integrity and availability), Secu	urity	y Fu	ınction	al		
Requirements.						
User Authentication: Means of Authentication,						
Authentication, Token-Based Authentication	,		iometr			
Authentication, Remote User Authentication, Security	y Is	sues	for Us	er		
Authentication.						4 = **
Unit II: Access Control & Security		01:		,		15 H
Access Control: Access Control Principles, Subject						
Access Rights, Discretionary Access Control, File	Aco	cess	Contro	ol,		
Role-Based Access Control.	D 4	- 1-	- A			
Database Security: The Need for Database Security, I	Dat	abase	e Acce	SS		
Control, Database Encryption.	1		1 7:	_		
Malicious Software: Types of Malicious Software (Malicious Software)		,				
Worms, SPAM E-mail, Trojans, Zombie, Bots, Keylo				_		
Spyware, Backdoors, Rootkits, Preventive Measu						
Service Attacks: Types of DoS attacks, Defenses Ag Service Attacks.	gam	ist D	emai-c)1-		
Unit III: Intrusion Detection & Prevention						15 H
Intrusion Detection: Intruders, Intrusion Detection	on	Цо	ot Dog	24		13 11
Intrusion Detection, Distributed Host-Based Intru	,					
Network-Based Intrusion Detection, Honeypots				,		
Intrusion Prevention Systems: The Need for Fire						
Characteristics, Types of Firewalls, Firewall Ba						
Prevention Systems. Cryptographic Algorithm		O ,				
Encryption Principles, Data Encryption Standards (D		•	mmeu	10		
Unit IV: Security Protocols	<u> </u>	,				15 H
Introduction to Internet Security Protocols & Standa	ard	s: SS	I. TI	S		10 11
HTTPS, IPv4 and IPv6 Security protocols.	m W	. 55	_,	~,		
Security Policies and Cyber Laws: Concept of Infor	rma	tion	Securi	tv		
Policy, ISO Standards, various Indian Cyber Laws, Information						
Technology Act 2000, Electronic Record and E-Governance,						
Classification and Provisions of Cyber Crimes,						
Certifying Authorities, Patent, Copyright, Dig		_				
Introduction to Cyberspace						

Course Learning Outcomes: After studying this course students will be able to:

- 1. Identify issues involved in the field of information security.
- 2. Explain the key security requirements of Confidentiality, Integrity & Availability.

- 3. Demonstrate the concept of Intrusion Detection & Intrusion Prevention.
- 4. Apply Symmetric Encryption techniques.
 5. Describe the concept of Security policies and Cyber Laws.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
William Stallings, Lawrie Brown	Computer Security: Principles & Practice	Pearson	2019	978- 9353438869
Surya Prakash Tripathi, Ritendra Goel, Praveen Kumar Shukla	Introduction to Information Security and Cyber Law	Dreamtech Press	2014	978- 9351194736
Christof Paar, Jan Pelzl,	Understanding Cryptography: A Textbook for Students and Practitioners	Springer	2014	978- 3642446498
William Stallings	Cryptography and Network Security Principles and Practices	Pearson	2017	978- 9332585225
Darren Death	Information Security Handbook	Packt Publishing	2017	978- 1788478830

Course Title: Machine Learning and Data Analytics Using Python

Course Contents/syllabus:	ig L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	0	4	5

	Teaching
	Hours
Unit I: Introduction	10 H
Machine Learning: Introduction, supervised, unsupervised, reinforcement learning. Regression: Linear Regression, linear classification, logistic regression.	
Unit II: Clustering & Classification	11 H
Clustering: K nearest neighbor, decision trees, Random forest. Classification: Naïve Bayes, principal component analysis, Introduction to neural networks.	
Unit III: Python Programming	12 H

Introduction to Python Programming: Data types, operators, control		
structures, functions, modules.		
Numpy: Introduction to numpy, arrays, array indexing, operations		
Unit IV: Pandas & Matplotlib		12 H
Pandas: Introduction to pandas, series, group by, Data Frames,		
missing data, merging, joining, concatenating, operations, data input		
and output.		
Matplotlib: Plotting, markers, line, labels, grid, subplot, scatter, bars,		
histograms, pie charts.	ļ	

List of Experiments (Total:60 Hours)

- 1. Design and evaluate a data model using Linear Regression.
- 2. Design and evaluate a data model using Logistic Regression.
- 3. Design and evaluate a data model using KNN.
- 4. Design and evaluate a data model using K Means Clustering.
- 5. Design and evaluate a data model using SVM.
- 6. Design and evaluate a data model using PCA.
- 7. Design and evaluate a data model using Decision Trees.
- 8. Design and evaluate a data model using Random Forest.
- 9. Compare the performance of all the above ML techniques on a similar data set using matplotlib.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain Machine Learning concepts
- 2. Differentiate between supervised and unsupervised learning
- 3. Discuss clustering and classification algorithms
- 4. Analyse data using Python Numpy, Panda Libraries
- 5. Implement data visualization using matplotlib library of Python.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
M Pradhan, U Dinesh Kumar	Machine Learning using Python	Wiley	2019	978- 8126579907
Andreas Muller	Introduction to Machine Learning with Python: A Guide for Data Scientists	Shroff/O'Reilly	2016	978- 9352134571
Willian Mckinney	Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython	Shroff/O'Reilly	2017	978- 9352136414

Puneet Mathur	Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail and Finance	APRESS	2019	978- 1484247143
John Paul, Luca Massron	Python for Data Science For Dummies	Wiley	2019	978- 8126524938

Course Title: Data Science

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	4	0	0	0	4
					Teaching

		Teaching
		Hours
Unit I: Introduction		15 H
Introduction to core concepts and technologies: Introduction,		
Terminology, data science process, data science toolkit, Types of data,		
Example applications.		
Data collection and management: Introduction, Sources of data, Data		
collection and APIs, Exploring and fixing data, Data storage and		
management, Using multiple data sources.		
Unit II: Data Analysis		15 H
Data analysis: Introduction, Terminology and concepts, Introduction		
to statistics, Central tendencies and distributions, Variance,		
Distribution properties and arithmetic, Samples/CLT, Basic machine		
learning algorithms, Linear regression, SVM, Naive Bayes.		
Unit III: Data Visualization and Applications		15 H
		13 11
Data visualization: Introduction, Types of data visualization, Data for		
visualization: Data types, Data encodings, Retinal variables, Mapping		
variables to encodings, Visual encodings.		
Applications of Data Science, Technologies for visualization, Bokeh		
(Python)		
Unit IV: Recent trends in Data Science		15 H
Recent trends in various data collection and analysis techniques,		
various visualization techniques, application development methods of		
used in data science.		

Course Learning Outcomes: After studying this course students will be able to:

- 1. Explain how data is collected, managed and stored for data science.
- 2. Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists.
- 3. Implement data collection and management scripts using MongoDB.
- 4. Apply various techniques for data visualization.

5. Understand recent trends in the filed of data collection techniques.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Cathy O'Neil and Rachel Schutt	Doing Data Science, Straight Talk from the Frontline	O'Reilly Media	2013	978- 1449358655
Jure Leskovek, Annand Rajaraman and Jeffrey Ullman	Mining of Massive Datasets	Cambridge University Press	2020	978- 1108476348
Foster Provost, Tom Fawcett	Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking	O'Reilly Media	2013	978- 1449361327
Qurban A. Memon, Shakeel Ahmed Khoja	Data Science: Theory, Analysis and Applications	CRC Press	2019	978- 0367208615

Course Title: NLP and Speech Recognition

Course Contents/syllabus:	L	Т	P/S	S	W/FW	TOTAL CREDIT UNITS
	4	0	0		0	4
	_					Teaching
						Hours
Unit I: Introduction						15 H
Introduction to Natural Language Processing						
Regular Expressions, Text Normalization, Edit Distance: Regular				ar		
Expressions, Words, Corpora, Text Normalization, Minimum Edit						
Distance.						
Unit II: N-gram Language Models and Naïve Ba	aves					15 H

N-gram Language Models: N-Grams, Evaluating Language Models, Generalization and Zeros, Smoothing, Kneser-Ney Smoothing, Huge Language Models and Stupid Backoff, Advanced: Perplexity's Relation to Entropy Naive Bayes and Sentiment Classification: Naive Bayes Classifiers, Training the Naive Bayes Classifier, Optimizing for Sentiment Analysis, Naive Bayes for other text classification tasks, Naive Bayes as a Language Model, Evaluation: Precision, Recall, F-measure, Test sets and Cross validation, Statistical Significance Testing, Avoiding Harms in Classification.	15 W
Unit III: Logistic Regression and Chatbots	15 H
Classification: the sigmoid, Learning in Logistic Regression, the cross-entropy loss function, Gradient Descent, Regularization, Multinomial logistic regression, Interpreting models, Advanced: Deriving the Gradient Equation Properties of Human Conversation, Chatbots, GUS: Simple Framebased Dialogue Systems, The Dialogue-State Architecture, Evaluating Dialogue Systems, Dialogue System Design.	
Unit IV: Phonetics and Automatic Speech Recognition	15 H
Speech Sounds and Phonetic Transcription, Contents, Articulatory Phonetics, Prosody, Acoustic Phonetics and Signals, Phonetic Resources Automatic Speech Recognition and Text-to-Speech: The Automatic Speech Recognition Task, Feature Extraction for ASR: Log Mel Spectrum, Speech Recognition Architecture, CTC, ASR Evaluation: Word Error Rate, TTS, Other Speech Tasks.	

- 1. Discuss the fundamental concepts of natural language processing
- 2. Explain text normalization, use of edit distance, and regular expressions
- 3. Implement Naive bayes and sentiment classification algorithms
- 4. Familiarize with chatbots and phonetics
- 5. Describe the concept of speech recognition and text to speech conversion.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Daniel Jurafsky, James H. Martin	Speech and Language Processing, An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition	Pearson	2013	978- 9332518414
Ruslan Mitkov	The Oxford Handbook of Computational Linguistic	OUP Oxford	2022	978- 0199573691

Grant Ingersoll, Thomas Morton and Drew Farris	Taming Text: How to Find, Organize, and Manipulate It	Manning Publications	2013	978- 1933988382
Steven Bird, Ewan Klein and Edward Loper	Natural Language Processing with Python	Shroff	2011	978- 8184047486

Course Title: E-Commerce and Digital Marketing

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS	
	4	0	0	0	4	l

	0	4
		Teaching Hours
Unit I: Introduction		15 H
Introduction to Electronic Commerce: Technical Components of		
Ecommerce, E-Commerce Framework, E-Commerce Applications		
and Electronic Business. Internet Service provider and World wide		
web. Architectural Framework for Electronic Commerce, WWW as		
the Architecture and Hypertext publishing.		
Unit II: E-Payment and Data Interchange		15 H
Electronic payment System: Types and Traditional payment, Value		
exchange system, Electronic funds transfer, Digital Token Based		
Electronic Payment System, Smart Cards – Credit Cards, Risk in		
Electronic Payment Systems, Designing Electronic Payment Systems.		
Electronic Data Interchange: Concepts and applications of EDI and		
Limitation. EDI and Electronic Commerce standardization and EDI –		
EDI Software Implementation. EDI Applications in Business – EDI: Legal, Security and Privacy issues. E- Governance for India: Indian		
customer EDI system and Service centers.		
Unit III: Digital Marketing		15 H
Introduction to Digital Marketing: Components of Online Marketing		10 11
(Email, Forum, Social network, Banner, Blog), Impact of Online		
Marketing, Basics of Affiliate Marketing, Viral Marketing, Influencer		
Marketing, Referral Marketing, Online Advertising, Mobile		
Marketing, Web analytics and Email Marketing.		
Unit IV: SEO & SEM		15 H
Search Engine Optimization (SEO) and Social Engine Marketing		
(SEM) Importance of Internet and Search Engine and Role of		
Keywords in SEO, On-Page Optimization (Onsite) and Off Page		
Optimization. Introduction to Social Media Marketing		
Website Planning & Creation: Content Marketing Strategy, Keywords		
Research and Analysis, Web Presence and Creating content.		
Successful content marketing strategies and case studies.		

- 1. Discuss the scope of ecommerce.
- 2. Explain payment modes used in ecommerce today.
- 3. Execute a comprehensive digital marketing strategy and plan
- 4. Describe the use digital marketing for multiple goals within a larger marketing and/or media strategy.
- 5. List the major digital marketing channels.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Whitley, David	E-Commerce Strategy, Technologies and Applications	Mc Graw Hill	2017	978- 0070445321
Laudon and Traver	E-Commerce: Business, Technology & Society	Pearson	2001	978- 0201748154
Damian Ryan,	Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation	Kogan Page	2016	978- 0749478438
Seema Gupta	Digital Marketing	Mc Graw Hill	2009	978- 9353169787
Puneet Singh Bhatia	Fundamentals of Digital Marketing	Pearson	2017	978- 9332587373

Course Title: Cloud Computing

	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
Course Contents/syllabus:	3	0	2	0	4
					Hours
Unit I: Introduction					11 H

Overview of Computing Paradigm: Recent trends in Computing - Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing. Introduction to Cloud Computing: Vision of Cloud Computing, Defining a Cloud, Cloud Reference Model, Deployment Model, Characteristics, Benefits of Cloud Computing, Challenges ahead. Cloud computing vs. Cluster computing vs. Grid computing.	
Unit II: Migration and Virtualization	11 H
Migrating into a Cloud: Introduction, Broad approaches to Migrating into the Cloud, The Seven-Step Model of Migration Into a Cloud. Virtualization: Introduction, Characteristics of Virtualized environment, Taxonomy of Virtualization techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Technology Examples- Xen, VMware, Microsoft Hyper-V	
Unit III: SLA Management and Security	11 H
SLA Management in Cloud Computing: Inspiration, Traditional Approaches to SLO Management, Types of SLA, Life Cycle of SLA, SLA management in Cloud. Automated Policy-based management. Securing Cloud services: Cloud Security, Securing Data- Brokered Cloud Storage Access, Storage location and tenancy, Encryption, Auditing and compliance. Cloud Storage: Provisioning Cloud Storage, Virtual storage containers, Cloud Storage Interoperability (CDMI, OCCI), Database Storage, Resource Management	
Unit IV: Advanced Topics	12 H
Energy Efficiency in cloud, Market Oriented Cloud Computing, Federated Cloud Computing, Mobile Cloud Computing, Fog computing, Big Data Analytics, Basics of IoT. Cloud Platforms in Industry: Amazon Web Services-Compute Services, Storage Services, Communication Services, Additional Services. Google App Engine-Architecture and Core Concepts, Application Life Cycle. Cost Model. Microsoft Azure-Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance.	

List of Experiments

(Total 30 Hours)

- 1. Install VirtualBox/VMware Workstation on different OS.
- 2. Install different operating systems in VMware.
- 3. Simulate a cloud scenario using simulator.
- 4. Implement scheduling algorithms.
- 5. To study cloud security management.
- 6. To study and implementation of identity management
- 7. Case Study Amazon Web Services/Microsoft Azure/Google cloud services.

- 8. Enlist various companies in cloud business and the corresponding services provided by them and tag them under SaaS, PaaS & IaaS.
- 9. Create a warehouse application using tools supplied by any SaaS provider.
- 10. Implementation of Para-Virtualization using VM Ware's Workstation/ Oracle's Virtual Box and Guest O.S. Learn creation, migration, cloning and managing of virtual machines.
- 11. Using public cloud service providers tools for exploring the usage of IaaS, PaaS and SaaS cloud services.
- 12. Interact with Cloud Storage and conduct typical management tasks such as bucket creation, file transfers, Access Control Lists (ACL) permissions and Identity and Access Management (IAM) configuration.
- 13. Setting up a private cloud using open-source tools (Eucalyptus/Open Stack etc.).
- 14. Hands-on exercises on open-source tool like cloudsim.

- 1. Discuss the basic concept and importance of cloud computing.
- 2. Explain the process of migrating to a cloud solution for different applications.
- 3. Compare and evaluate the virtualization technologies.
- 4. Monitor and manage the cloud resources, applications and data while addressing the security concerns.
- 5. Use cloud solutions offered by industry leaders for various applications.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Raj Kumar Buyya, James Broberg, Andrezei M. Goscinski	Cloud Computing: Principles and Paradigms	Wiley	2013	978- 8126541256
Anthony T. Velte, Toby J. Velte and Robert Elsenpeter	Cloud Computing: A practical Approach	Mc Graw Hill	2017	978- 0070683518
Barrie Sosinsky	Cloud Computing Bible	Wiley	2011	978- 0470903568

Judith Hurwitz, Robin Bllor, Marcia Kaufman, Fern Halper	Cloud Computing for dummies	Wiley	2009	978- 8126524877
Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi	Mastering Cloud Computing	Mc Graw Hill	2017	978- 1259029950

Course Title: IOT and Blockchain Technologies

	L	T	P/S	SW/FW	TOTAL
					CREDIT
Course Contents/syllabus:					UNITS
	3	0	2	0	4

	0	4
		Teaching
		Hours
Unit I: Introduction		11 H
Definitions & Characteristics of IoT, Physical Design of IoT-Things		
in IoT, Protocols, Logical Design of Functional Blocks,		
Communication Models, Communication APIs.		
Enabling Technologies: Wireless Sensor Networks, Cloud		
Computing, Big Data Analytics, Communication Protocols,		
Embedded Systems, IoT Levels & Deployment Templates.		
Unit II: Elements of IOT		11 H
Elements of IoT: Hardware Components- Computing (Arduino,		
Raspberry Pi), Communication, Sensing, Actuation, I/O interfaces.		
Software Components- familiarity with APIs for Communication,		
Protocols-MQTT, ZigBee, Bluetooth, CoAP, UDP, TCP. Solution		
Framework for IoT applications.		
Domain Specific IoTs: IoT applications for Home Automation, Cities,		
Environment, Energy, Retail, Logistics, Agriculture, Industry, health		
and Lifestyle.		
Unit III: Concept of Blockchain		11 H
Overview of Blockchain, Public Ledgers, Bitcoin, Smart Contracts,		
Block in a Blockchain, Transactions, Distributed Consensus, Public		
vs Private Blockchain, Understanding Crypto currency to Blockchain,		
Permissioned Model of Blockchain, Overview of Security aspects of		
Blockchain.		
Unit IV: Bitcoin and Blockchain		12 H

Creation of coins, Payments and double spending, Bitcoin Scripts,		
Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining,	 -	
Block propagation and block relay.	 -	
Enterprise Application of Blockchain: Cross border payments, Know	 -	
Your Customer (KYC), Food Security, Mortgage over Blockchain,	 -	
Blockchain enabled Trade, We Trade — Trade Finance Network,	<u> </u>	
Supply Chain Financing, Identity on Blockchain.	ļ	

List of Experiments

(Total 30 Hours)

- 1. Design a simple smart contract to understand state variables.
- 2. Design a simple smart contract to understand getter and setter functions.
- 3. Design a simple smart contract to understand transaction vs calls.
- 4. Design a simple smart contract to understand fixed size arrays and dynamic arrays.
- 5. Design a simple smart contract to understand array resizing.
- 6. Design a simple smart contract to understand concepts like structures.
- 7. Design a simple smart contract to understand enums.
- 8. Design a simple smart contract to understand mappings.
- 9. Design a simple smart contract to understand constructors.
- 10. Design a smart contract to understand built-in global variables.
- 11. Design a simple smart contract to understand variables visibility specifiers.
- 12. Design a simple smart contract to understand function modifiers.
- 13. Design a simple smart contract to understand fullback payable function.
- 14. Design a simple smart contract to understand accessing the contract balance.
- 15. Design a simple smart contract of storage.
- 16. Design a smart contract to implement cryptocurrency.
- 17. Create and deploy a blockchain network using Hyperledger Fabric SDK/Ethereum for Java Set up and initialize the channel, install and instantiate chain code, and perform invoke and query on your blockchain network.
- 18. Interact with a blockchain network. Execute transactions and requests against a blockchain network by creating an app to test the network and its rules.
- Develop an IOT asset tracking app using Blockchain. Use an IOT asset tracking device to improve a supply chain by using Blockchain, IOT devices and Node-RED.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Discuss the terminology and enabling technologies of IoT and Blockchain
- 2. Identify various element of IoT.
- 3. Enumerate the steps involved in IoT system design methodology
- 4. Describe the working of bit coin crypto currency
- 5. List domain specific applications of IoT and Blockchain

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Arshdeep Bahga, Vijay Madisetti	Internet of Things-A Hands-on Approach	Orient Blackswan	2015	978- 8173719547
Melanie Swan	Blockchain: Blueprint for a New Economy	Shroff/O'Reilly	2015	978- 9351109921
Andreas Antonopoulos	Mastering Bitcoin: Unlocking Digital Cryptocurrencies	Shroff/O'Reilly	2017	978- 9352135745
Pethuru Raj and Anupama C. Raman	The Internet of Things: Enabling Technologies, Platforms, and Use Cases	Auerbach Publications	2017	978- 1498761284
Imran Bashir	Mastering Blockchain	Packt Publishing	2018	978- 1788839044

Course Title: Digital Image Processing

Course Contents/syllabus:	L	T	P/S	SW/FW	TOTAL CREDIT UNITS
	3	0	2	0	4

	Teaching Hours
Unit I: Introduction	11 H
Fundamental steps in Digital Image Processing, Components of an	
image processing system, Image sampling and quantization, Color	
models.	
Pixel relationships and distance metrics -Image coordinate system,	
Image topology, Connectivity, Relations, Distance measures.	
Classification of image processing Operations - Arithmetic, Logical,	
Geometrical (Translation, Scaling, Zooming, Linear Interpolation,	
Mirror or Reflection, Shearing, Rotation, Affine and Inverse	
transformation) Operations, Image interpolation Techniques (Down	
sampling and up sampling), Set operations, Statistical operations,	
Convolution and Correlation operations.	
Unit II: Image Enhancement	11 H

Image enhancement point operations- Linear and non-linear functions, Piecewise linear functions, Histogram processing. Spatial filtering - basics of filtering in the spatial domain, Vector representation, smoothing linear and non-linear filters, sharpening filters. Basics of filtering in the frequency domain, Image smoothing and sharpening using frequency domain filters. A model of the image degradation/restoration process, Noise models, Noise filters, Degradation function.	
Unit III: Wavelet Domain	11 H
Wavelet analysis, Continuous wavelet transform, Discrete wavelet	
transform, Wavelet decomposition and reconstruction in two	
dimensions, Wavelet packet analysis, Wavelet based image denoising.	
Unit IV: Compression and Segmentation	12 H
Image compression model, Compression measures, Compression	
algorithm and its types (Entropy, Predictive, Transform and layered	
coding), Types of redundancy (Coding, Inter-pixel, Psycho-visual and	
Chromatic), Lossless compression algorithms – Run-length, Huffman,	
Bit-plane, Arithmetic, Predictive coding. Lossy compression	
algorithms – Lossy predictive, Block transform coding.	
Image Segmentation: Classification of image segmentation	
algorithms, Point, Line and Edge detection, Hough transforms, Corner	
detection, Global thresholding, Otsu's method, Multivariable	
thresholding, Region-based segmentation, Watershed segmentation	

List of Experiments

(Total 30 Hours)

- 1. Installation of image processing software and use of basic image processing commands.
- 2. Generation of lines, array, matrix and image
- 3. Reading and displaying images in different formats using different color models
- 4. Converting color images into monochrome images
- 5. Displaying of image Histogram
- 6. Image color enhancements using pseudo coloring techniques
- 7. Image restoration techniques.
- 8. Application of image processing operations
- 9. Point, Line, and Edge Detections in images
- 10. Boundary Detections in images
- 11. Color image processing
- 12. Wavelet transforms.
- 13. Image compression techniques

14. A minor project based on above taught image processing techniques.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Discuss the need of various image transforms along with properties
- 2. Learn different techniques employed for the enhancement of images
- 3. Describe the rapid advances in Machine vision
- 4. Analyze images in multi resolution environment
- 5. Evaluate image compression techniques

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Rafael C. Gonzales, Richard E. Woods	Digital Image Processing	Pearson	2018	978- 9353062989
Anil Jain K	Fundamentals of Digital Image Processing	Pearson	2015	978- 9332551916
Willliam K Pratt	Digital Image Processing	Wiley	2010	978- 8126526840
Nick Efford	Digital Image Processing a practical introduction using Java	Addison Wesley	2000	978- 0201596236

Course Title: Professional Ethics and Responsibilities -II

	\mathbf{L}	T	P/S	SV	V/FW	TOTAL
Course Contents/syllabus:						CREDIT
Course Contents/synabus.						UNITS
	1	0	1		0	1
						Teaching
						Hours
Unit I: Philosophy						04 H
Introduction to philosophy; definition, nature an	d sc	ope,	conce	pt,		
branches						
Unit II: Practices at workplace						04 H
Employee Rights, Conflicts of Interest, Employee	ee R	elatio	nship	at		
workplace.						
Unit III: Ethics in different domains						04 H
Role of ethics in different domain, Ethics in Research, Medicine,						
Engineering, Sciences, Entrepreneurship, Psychology, Journalism,						
Management, law, Humanities etc.						
Unit IV: Sustainable practices						06 H

Green Practices, Ethics to handle VUCA environment, Importance of	
sustainability, Sustainable Business practices, Corporate Social	
Responsibility, Inclusive development.	

Professional Skills Development Activities:

- Students will carry out an industrial survey /interview /focus group discussion to identify and understand the translation of professional values and ethics in daily work practices. Students will compile a minor project report based on it.
- The students will develop a case study based on any major violation of professional ethics by studying newspaper articles, policy documents, discussions paper in parliament media interviews and documentaries etc. (Give presentation in team of 3).
- The students will carry out a home assignment by writing a review of literature on ethical issues and practices in his/ her area of study.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Relate code of ethics with appropriate profession
- 2. Comprehend the concept of professional ethics
- 3. Analyze various ethical issues at workplace
- 4. Interpret theories of ethics and their implications

AUTHOR	TITLE	Publisher	Year of publication	ISBN
R Boatright John, D Smith Jeffrey, Prasan Patra Bibhu	Ethics and the Conduct of Business	Pearson	2017	978- 9352862306
Edmund G Seebauer and Robert L Barry	Fundamentals of Ethics for Scientists and Engineers			978- 0195698480
Richard Rowson	Working Ethics: How to Be Fair in a Culturally Complex World	Jessica Kingsley	2006	978- 1853027505
Laura P. Hartman and Joe Desjardins	8		2013	978- 1259098277
Michael Davis, Andrew Stark	Conflict of Interest in the Professions	OUP, USA	2001	978- 0195128635